Suppr超能文献

定期学校停课对季节性流感流行的影响:基于数据的比利时空间传播模型。

The impact of regular school closure on seasonal influenza epidemics: a data-driven spatial transmission model for Belgium.

机构信息

Sorbonne Universités, UPMC Univ. Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMR-S 1136), Paris, 75012, France.

Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium.

出版信息

BMC Infect Dis. 2018 Jan 10;18(1):29. doi: 10.1186/s12879-017-2934-3.

Abstract

BACKGROUND

School closure is often considered as an option to mitigate influenza epidemics because of its potential to reduce transmission in children and then in the community. The policy is still however highly debated because of controversial evidence. Moreover, the specific mechanisms leading to mitigation are not clearly identified.

METHODS

We introduced a stochastic spatial age-specific metapopulation model to assess the role of holiday-associated behavioral changes and how they affect seasonal influenza dynamics. The model is applied to Belgium, parameterized with country-specific data on social mixing and travel, and calibrated to the 2008/2009 influenza season. It includes behavioral changes occurring during weekend vs. weekday, and holiday vs. school-term. Several experimental scenarios are explored to identify the relevant social and behavioral mechanisms.

RESULTS

Stochastic numerical simulations show that holidays considerably delay the peak of the season and mitigate its impact. Changes in mixing patterns are responsible for the observed effects, whereas changes in travel behavior do not alter the epidemic. Weekends are important in slowing down the season by periodically dampening transmission. Christmas holidays have the largest impact on the epidemic, however later school breaks may help in reducing the epidemic size, stressing the importance of considering the full calendar. An extension of the Christmas holiday of 1 week may further mitigate the epidemic.

CONCLUSION

Changes in the way individuals establish contacts during holidays are the key ingredient explaining the mitigating effect of regular school closure. Our findings highlight the need to quantify these changes in different demographic and epidemic contexts in order to provide accurate and reliable evaluations of closure effectiveness. They also suggest strategic policies in the distribution of holiday periods to minimize the epidemic impact.

摘要

背景

由于学校关闭可能会减少儿童及其所在社区的传播,因此通常被认为是减轻流感疫情的一种选择。然而,由于证据存在争议,该政策仍存在很大争议。此外,导致缓解的具体机制尚不清楚。

方法

我们引入了一个随机空间年龄特定的复群模型,以评估与假期相关的行为变化及其对季节性流感动态的影响。该模型应用于比利时,使用有关社交混合和旅行的特定于国家的数据进行参数化,并针对 2008/2009 流感季节进行了校准。它包括在周末与平日之间以及假期与学期之间发生的行为变化。探讨了几种实验方案,以确定相关的社会和行为机制。

结果

随机数值模拟表明,假期会大大延迟季节高峰期并减轻其影响。混合模式的变化是造成这种影响的原因,而旅行行为的变化不会改变流行状况。周末通过周期性地抑制传播来减缓季节的发展。圣诞节假期对疫情的影响最大,但是以后的学校假期可能有助于减少疫情规模,这强调了考虑完整日历的重要性。圣诞节假期延长一周可能会进一步减轻疫情。

结论

个人在假期中建立联系的方式的变化是解释定期关闭学校的缓解效果的关键因素。我们的发现强调了在不同的人口和流行环境中量化这些变化的必要性,以提供对关闭效果的准确可靠的评估。它们还建议在分配假期期间采取战略性政策,以最大程度地减少疫情的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7f1/5764028/e3afa6899e22/12879_2017_2934_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验