Suppr超能文献

大型集会和假日旅行对流感大流行进程的影响:计算模型。

The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model.

机构信息

Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Drive, Atlanta, Georgia, USA.

出版信息

BMC Public Health. 2010 Dec 21;10:778. doi: 10.1186/1471-2458-10-778.

Abstract

BACKGROUND

During the 2009 H1N1 influenza pandemic, concerns arose about the potential negative effects of mass public gatherings and travel on the course of the pandemic. Better understanding the potential effects of temporal changes in social mixing patterns could help public officials determine if and when to cancel large public gatherings or enforce regional travel restrictions, advisories, or surveillance during an epidemic.

METHODS

We develop a computer simulation model using detailed data from the state of Georgia to explore how various changes in social mixing and contact patterns, representing mass gatherings and holiday traveling, may affect the course of an influenza pandemic. Various scenarios with different combinations of the length of the mass gatherings or traveling period (range: 0.5 to 5 days), the proportion of the population attending the mass gathering events or on travel (range: 1% to 50%), and the initial reproduction numbers R0 (1.3, 1.5, 1.8) are explored.

RESULTS

Mass gatherings that occur within 10 days before the epidemic peak can result in as high as a 10% relative increase in the peak prevalence and the total attack rate, and may have even worse impacts on local communities and travelers' families. Holiday traveling can lead to a second epidemic peak under certain scenarios. Conversely, mass traveling or gatherings may have little effect when occurring much earlier or later than the epidemic peak, e.g., more than 40 days earlier or 20 days later than the peak when the initial R0 = 1.5.

CONCLUSIONS

Our results suggest that monitoring, postponing, or cancelling large public gatherings may be warranted close to the epidemic peak but not earlier or later during the epidemic. Influenza activity should also be closely monitored for a potential second peak if holiday traveling occurs when prevalence is high.

摘要

背景

在 2009 年 H1N1 流感大流行期间,人们对大规模公众集会和旅行对大流行进程的潜在负面影响表示担忧。更好地了解社会混合模式随时间变化的潜在影响,可以帮助公共卫生官员确定是否以及何时取消大型公众集会或在流行期间实施区域旅行限制、建议或监测。

方法

我们使用来自佐治亚州的详细数据开发了一个计算机模拟模型,以探索各种社会混合和接触模式的变化(代表大规模集会和节日旅行)如何影响流感大流行的进程。我们探讨了不同组合的各种情景,包括大规模集会或旅行时间的长度(范围:0.5 至 5 天)、参加大规模集会活动或旅行的人口比例(范围:1%至 50%)以及初始繁殖数 R0(1.3、1.5、1.8)。

结果

在流行高峰期前 10 天内发生的大规模集会可能导致高峰流行率和总发病率相对增加 10%,并且可能对当地社区和旅行者的家庭产生更严重的影响。在某些情况下,节日旅行可能导致第二个流行高峰。相反,如果大规模旅行或集会发生在流行高峰期之前或之后的时间过长,例如比流行高峰期早 40 天或晚 20 天以上,初始 R0=1.5,则可能影响较小。

结论

我们的研究结果表明,在流行高峰期附近,但不在流行高峰期之前或之后,监测、推迟或取消大型公众集会可能是必要的。如果在流行期间发病率较高时发生节日旅行,应密切监测流感活动是否存在潜在的第二个高峰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c53c/3022852/01e01c221195/1471-2458-10-778-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验