School of Electrical and Electronic Engineering, Korea University , Seoul 02841, Republic of Korea.
Center for Nanoparticle Research, Institute for Basic Science (IBS) , Daejeon 34126, Republic of Korea.
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3739-3749. doi: 10.1021/acsami.7b13997. Epub 2018 Jan 22.
The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as SnS, SnSe, and InSe, to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the SnS, SnSe, and InSe ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm/(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.
通过去除表面配体、缺陷钝化和简便的电子掺杂,最近实现了高性能胶体量子点 (QD) 薄膜晶体管 (TFT) 的发展。在这里,我们报告了通过优化表面功能化和通过无肼金属硫属化物 (MCC) 配体实现的稳健缺陷钝化,实现了高性能溶液处理的 CdSe QD-TFT。已经通过无肼的原位反应衍生的 MCC 配体(例如 SnS、SnSe 和 InSe)研究了配体对 CdSe QD 的影响的基础机制,以允许使用良性溶液处理。此外,通过在 QD 层上引入铟纳米粒子,研究了缺陷钝化和远程 n 型掺杂效应。通过引入电子活性 MCC 封端和铟纳米粒子的热扩散,可以实现 QD 的强电子耦合和固态缺陷钝化。值得注意的是,扩散的铟纳米粒子不仅有助于 QD 之间,而且有助于源极/漏极和 QD 半导体之间的电荷注入,从而显著降低了接触电阻。使用良性有机溶剂,基于 SnS、SnSe 和 InSe 配体的 QD-TFT 的场效应迁移率分别超过 4.8、12.0 和 44.2 cm/(V s)。这里报道的结果表明,MCC 配体和适当掺杂剂的结合提供了一种通用的途径,可以获得高性能、极稳定的溶液处理的基于 QD 的电子器件,其毒性极小,与标准互补金属氧化物半导体处理兼容,并可应用于大规模的片上器件。