Suppr超能文献

通过自旋极化扫描隧道光谱显微镜对硅(110)上自组装平行镍硅纳米线阵列中的层状反铁磁性进行观测。

Observation of layered antiferromagnetism in self-assembled parallel NiSi nanowire arrays on Si(110) by spin-polarized scanning tunneling spectromicroscopy.

作者信息

Hong Ie-Hong, Hsu Hsin-Zan

机构信息

Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan. Institute of Optoelectronics and Solid State Electronics, National Chiayi University, Chiayi 60004, Taiwan.

出版信息

Nanotechnology. 2018 Mar 2;29(9):095706. doi: 10.1088/1361-6528/aaa6ea.

Abstract

The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [Formula: see text] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.

摘要

利用自旋极化扫描隧道显微镜/能谱(SP-STM/STS)对形貌和磁畴进行直接成像,在室温下观察到了自组装在Si(110)上的平行纳米线(NW)阵列的层状反铁磁性。形貌STM图像显示,自组装的单向平行NiSi纳米线沿[公式:见正文]方向(即内延生长)生长到Si(110)衬底中,并呈现多层生长。空间分辨的SP-STS图表明,这些不同高度的平行NiSi纳米线根据NiSi纳米线层堆叠中偶数层或奇数层的高度产生两个相反的磁畴。这种层状反铁磁结构可归因于具有B2(CsCl型)晶体结构的多层NiSi纳米线中相邻层之间的反铁磁层间交换耦合。这种在Si(110)中具有层状反铁磁有序的平行磁性NiSi纳米线阵列的内延异质结构为新型硅基自旋电子纳米器件的发展提供了一个新的重要视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验