Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie, 75005 Paris, France.
ISC-CNR , via dei Taurini, 00185 Rome, Italy.
J Phys Chem B. 2018 Feb 8;122(5):1573-1579. doi: 10.1021/acs.jpcb.7b10796. Epub 2018 Jan 30.
Proteins are marginally stable soft-matter entities that can be disrupted using a variety of perturbative stresses, including thermal, chemical, or mechanical ones. Fluid under extreme flow conditions is a possible route to probe the weakness of biomolecules and collect information on the molecular cohesive interactions that secure their stability. Moreover, in many cases, physiological flow triggers the functional response of specialized proteins as occurring in blood coagulation or cell adhesion. We deploy the Lattice Boltzmann molecular dynamics technique based on the coarse-grained model for protein OPEP to study the mechanism of protein unfolding under Couette flow. Our simulations provide a clear view of how structural elements of the proteins are affected by shear, and for the simple study case, the β-hairpin, we exploited the analogy to pulling experiments to quantify the mechanical forces acting on the protein under shear.
蛋白质是处于亚稳定状态的软物质实体,可以通过多种微扰应力(包括热、化学或机械应力)来破坏。在极端流动条件下的流体是探测生物分子脆弱性并收集关于确保其稳定性的分子内聚相互作用信息的一种可能途径。此外,在许多情况下,生理流动会触发专门蛋白质的功能反应,如发生在血液凝固或细胞黏附中的反应。我们基于粗粒化模型 OPEP 运用格子玻尔兹曼分子动力学技术来研究在 Couette 流中蛋白质解折叠的机制。我们的模拟清楚地展示了蛋白质的结构元素如何受到剪切的影响,对于简单的研究案例β发夹,我们利用与拉伸实验的类比来量化蛋白质在剪切下所受的机械力。