Suppr超能文献

固态 NMR 研究副黏病毒融合蛋白跨膜区在脂双层中的构象和三聚体缔合:对三聚体结构和融合活性的序列决定因素的深入了解。

Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights into the Sequence Determinants of Trimer Structure and Fusion Activity.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States.

Department of Medicine, Harbor-UCLA - LA BioMed, Torrance, CA 90502, United States.

出版信息

J Mol Biol. 2018 Mar 2;430(5):695-709. doi: 10.1016/j.jmb.2018.01.002. Epub 2018 Jan 10.

Abstract

Enveloped viruses enter cells by using their fusion proteins to merge the virus lipid envelope and the cell membrane. While crystal structures of the water-soluble ectodomains of many viral fusion proteins have been determined, the structure and assembly of the C-terminal transmembrane domain (TMD) remains poorly understood. Here we use solid-state NMR to determine the backbone conformation and oligomeric structure of the TMD of the parainfluenza virus 5 fusion protein. C chemical shifts indicate that the central leucine-rich segment of the TMD is α-helical in POPC/cholesterol membranes and POPE membranes, while the Ile- and Val-rich termini shift to the β-strand conformation in the POPE membrane. Importantly, lipid mixing assays indicate that the TMD is more fusogenic in the POPE membrane than in the POPC/cholesterol membrane, indicating that the β-strand conformation is important for fusion by inducing membrane curvature. Incorporation of para-fluorinated Phe at three positions of the α-helical core allowed us to measure interhelical distances using F spin diffusion NMR. The data indicate that, at peptide:lipid molar ratios of ~1:15, the TMD forms a trimeric helical bundle with inter-helical distances of 8.2-8.4Å for L493F and L504F and 10.5Å for L500F. These data provide high-resolution evidence of trimer formation of a viral fusion protein TMD in phospholipid bilayers, and indicate that the parainfluenza virus 5 fusion protein TMD harbors two functions: the central α-helical core is the trimerization unit of the protein, while the two termini are responsible for inducing membrane curvature by transitioning to a β-sheet conformation.

摘要

包膜病毒通过其融合蛋白将病毒脂质包膜和细胞膜融合来进入细胞。虽然许多病毒融合蛋白水溶性外域的晶体结构已经确定,但 C 端跨膜结构域 (TMD) 的结构和组装仍知之甚少。在这里,我们使用固态 NMR 来确定副流感病毒 5 融合蛋白 TMD 的骨架构象和寡聚结构。C 化学位移表明,TMD 中心富含亮氨酸的片段在 POPC/胆固醇膜和 POPE 膜中呈 α-螺旋构象,而富含异亮氨酸和缬氨酸的末端在 POPE 膜中向 β-折叠构象转变。重要的是,脂质混合测定表明,TMD 在 POPE 膜中的融合活性高于 POPC/胆固醇膜,这表明β-折叠构象通过诱导膜曲率对融合很重要。在α-螺旋核心的三个位置掺入对氟苯丙氨酸,使我们能够使用 F 自旋扩散 NMR 测量螺旋间距离。数据表明,在肽:脂质摩尔比约为 1:15 时,TMD 形成三聚体螺旋束,L493F 和 L504F 的螺旋间距离为 8.2-8.4Å,而 L500F 的螺旋间距离为 10.5Å。这些数据提供了病毒融合蛋白 TMD 在磷脂双层中三聚体形成的高分辨率证据,并表明副流感病毒 5 融合蛋白 TMD 具有两种功能:中心α-螺旋核心是蛋白质的三聚体形成单位,而两个末端通过转变为β-折叠构象负责诱导膜曲率。

相似文献

2
Viral fusion protein transmembrane domain adopts β-strand structure to facilitate membrane topological changes for virus-cell fusion.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10926-31. doi: 10.1073/pnas.1501430112. Epub 2015 Aug 17.
6
Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation in phospholipid bilayers.
J Biol Chem. 2019 Oct 4;294(40):14732-14744. doi: 10.1074/jbc.RA119.009542. Epub 2019 Aug 13.

引用本文的文献

1
Solid-State NMR of Virus Membrane Proteins.
Acc Chem Res. 2025 Mar 18;58(6):847-860. doi: 10.1021/acs.accounts.4c00800. Epub 2025 Feb 28.
3
SARS-CoV-2 Envelope Protein Forms Clustered Pentamers in Lipid Bilayers.
Biochemistry. 2022 Nov 1;61(21):2280-2294. doi: 10.1021/acs.biochem.2c00464. Epub 2022 Oct 11.
5
From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR.
Chem Rev. 2022 May 25;122(10):9848-9879. doi: 10.1021/acs.chemrev.1c00662. Epub 2021 Oct 25.
6
Parainfluenza virus entry at the onset of infection.
Adv Virus Res. 2021;111:1-29. doi: 10.1016/bs.aivir.2021.07.001. Epub 2021 Aug 23.
7
Virus Structures and Dynamics by Magic-Angle Spinning NMR.
Annu Rev Virol. 2021 Sep 29;8(1):219-237. doi: 10.1146/annurev-virology-011921-064653.
9
Viral Membrane Fusion and the Transmembrane Domain.
Viruses. 2020 Jun 27;12(7):693. doi: 10.3390/v12070693.
10
Biochemical Analysis of Coronavirus Spike Glycoprotein Conformational Intermediates during Membrane Fusion.
J Virol. 2019 Sep 12;93(19). doi: 10.1128/JVI.00785-19. Print 2019 Oct 1.

本文引用的文献

2
Structural Basis for Asymmetric Conductance of the Influenza M2 Proton Channel Investigated by Solid-State NMR Spectroscopy.
J Mol Biol. 2017 Jul 7;429(14):2192-2210. doi: 10.1016/j.jmb.2017.05.015. Epub 2017 May 20.
3
Structural basis for membrane anchoring of HIV-1 envelope spike.
Science. 2016 Jul 8;353(6295):172-175. doi: 10.1126/science.aaf7066. Epub 2016 Jun 23.
4
Viral fusion protein transmembrane domain adopts β-strand structure to facilitate membrane topological changes for virus-cell fusion.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10926-31. doi: 10.1073/pnas.1501430112. Epub 2015 Aug 17.
5
Distinguishing bicontinuous lipid cubic phases from isotropic membrane morphologies using (31)P solid-state NMR spectroscopy.
J Phys Chem B. 2015 Apr 16;119(15):4993-5001. doi: 10.1021/acs.jpcb.5b01001. Epub 2015 Apr 7.
6
Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding.
J Biomol NMR. 2015 Apr;61(3-4):235-48. doi: 10.1007/s10858-015-9900-4. Epub 2015 Jan 29.
7
De novo design of a transmembrane Zn²⁺-transporting four-helix bundle.
Science. 2014 Dec 19;346(6216):1520-4. doi: 10.1126/science.1261172.
9
10
Structure and immune recognition of trimeric pre-fusion HIV-1 Env.
Nature. 2014 Oct 23;514(7523):455-61. doi: 10.1038/nature13808. Epub 2014 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验