Department of Chemistry , Massachusetts Institute of Technology , 170 Albany Street , Cambridge , Massachusetts 02139 , United States.
Department of Medicine , Harbor-UCLA Medical Center , 1000 West Carson Street, Building RB2 , Torrance , California 90502 , United States.
J Am Chem Soc. 2018 Jul 5;140(26):8246-8259. doi: 10.1021/jacs.8b04010. Epub 2018 Jun 22.
The HIV-1 glycoprotein, gp41, mediates fusion of the virus lipid envelope with the target cell membrane during virus entry into cells. Despite extensive studies of this protein, inconsistent and contradictory structural information abounds in the literature about the C-terminal membrane-interacting region of gp41. This C-terminal region contains the membrane-proximal external region (MPER), which harbors the epitopes for four broadly neutralizing antibodies, and the transmembrane domain (TMD), which anchors the protein to the virus lipid envelope. Due to the difficulty of crystallizing and solubilizing the MPER-TMD, most structural studies of this functionally important domain were carried out using truncated peptides either in the absence of membrane-mimetic solvents or bound to detergents and lipid bicelles. To determine the structural architecture of the MPER-TMD in the native environment of lipid membranes, we have now carried out a solid-state NMR study of the full MPER-TMD segment bound to cholesterol-containing phospholipid bilayers. C chemical shifts indicate that the majority of the peptide is α-helical, except for the C-terminus of the TMD, which has moderate β-sheet character. Intermolecular F-F distance measurements of singly fluorinated peptides indicate that the MPER-TMD is trimerized in the virus-envelope mimetic lipid membrane. Intramolecular C-F distance measurements indicate the presence of a turn between the MPER helix and the TMD helix. This is supported by lipid-peptide and water-peptide 2D H-C correlation spectra, which indicate that the MPER binds to the membrane surface whereas the TMD spans the bilayer. Together, these data indicate that full-length MPER-TMD assembles into a trimeric helix-turn-helix structure in lipid membranes. We propose that the turn between the MPER and TMD may be important for inducing membrane defects in concert with negative-curvature lipid components such as cholesterol and phosphatidylethanolamine, while the surface-bound MPER helix may interact with N-terminal segments of the protein during late stages of membrane fusion.
HIV-1 糖蛋白 gp41 在病毒进入细胞过程中介导病毒脂质包膜与靶细胞膜融合。尽管对该蛋白进行了广泛研究,但文献中仍存在大量关于 gp41 的 C 端膜相互作用区域的不一致和矛盾的结构信息。该 C 端区域包含膜近端外部区域(MPER),其含有四个广泛中和抗体的表位,以及跨膜结构域(TMD),其将蛋白锚定在病毒脂质包膜上。由于难以结晶和溶解 MPER-TMD,因此该功能重要结构域的大多数结构研究都是使用在缺乏膜模拟溶剂或与去污剂和脂质双体结合的截断肽进行的。为了确定 MPER-TMD 在脂质膜的天然环境中的结构架构,我们现在已经对与含有胆固醇的磷脂双层结合的完整 MPER-TMD 片段进行了固态 NMR 研究。 C 化学位移表明,除 TMD 的 C 末端具有适度的β-折叠特征外,该肽的大部分为α-螺旋。单氟化肽的分子间 F-F 距离测量表明,MPER-TMD 在病毒包膜模拟脂质膜中三聚化。分子内 C-F 距离测量表明,MPER 螺旋和 TMD 螺旋之间存在一个转角。这得到了脂质-肽和水-肽 2D H-C 相关光谱的支持,其表明 MPER 结合到膜表面,而 TMD 跨越双层。这些数据表明全长 MPER-TMD 在脂质膜中组装成三聚体螺旋-转角-螺旋结构。我们提出,MPER 和 TMD 之间的转角可能与胆固醇和磷脂酰乙醇胺等负曲率脂质成分一起诱导膜缺陷很重要,而表面结合的 MPER 螺旋可能在膜融合的后期与蛋白的 N 端片段相互作用。