Suppr超能文献

行政数据在识别和分类成人先天性心脏病中的准确性有限。

Limited Accuracy of Administrative Data for the Identification and Classification of Adult Congenital Heart Disease.

机构信息

Adult Congenital Heart Disease Program, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR

Division of Biostatistics and Epidemiology, Oregon Health & Science University, Portland, OR.

出版信息

J Am Heart Assoc. 2018 Jan 12;7(2):e007378. doi: 10.1161/JAHA.117.007378.

Abstract

BACKGROUND

Administrative data sets utilize billing codes for research and quality assessment. Previous data suggest that such codes can accurately identify adults with congenital heart disease (CHD) in the cardiology clinic, but their use has yet to be validated in a larger population.

METHODS AND RESULTS

All administrative codes from an entire health system were queried for a single year. Adults with a CHD diagnosis code (, () codes 745-747) defined the cohort. A previously validated hierarchical algorithm was used to identify diagnoses and classify patients. All charts were reviewed to determine a gold standard diagnosis, and comparisons were made to determine accuracy. Of 2399 individuals identified, 206 had no CHD by the algorithm or were deemed to have an uncertain diagnosis after provider review. Of the remaining 2193, only 1069 had a confirmed CHD diagnosis, yielding overall accuracy of 48.7% (95% confidence interval, 47-51%). When limited to those with moderate or complex disease (n=484), accuracy was 77% (95% confidence interval, 74-81%). Among those with CHD, misclassification occurred in 23%. The discriminative ability of the hierarchical algorithm (C statistic: 0.79; 95% confidence interval, 0.77-0.80) improved further with the addition of age, encounter type, and provider (C statistic: 0.89; 95% confidence interval, 0.88-0.90).

CONCLUSIONS

codes from an entire healthcare system were frequently erroneous in detecting and classifying CHD patients. Accuracy was higher for those with moderate or complex disease or when coupled with other data. These findings should be taken into account in future studies utilizing administrative data sets in CHD.

摘要

背景

行政数据集利用计费代码进行研究和质量评估。先前的数据表明,这些代码可以在心脏病学诊所准确识别患有先天性心脏病 (CHD) 的成年人,但它们在更大的人群中的使用尚未得到验证。

方法和结果

查询了整个医疗系统的所有行政代码一年的数据。有 CHD 诊断代码(,()代码 745-747)的成年人定义了队列。使用先前验证的分层算法来识别诊断并对患者进行分类。所有图表都经过审查以确定金标准诊断,并进行比较以确定准确性。在 2399 名被识别的个体中,有 206 名个体根据算法没有 CHD,或者在提供者审查后被认为诊断不确定。在其余的 2193 名个体中,只有 1069 名个体被确诊为 CHD,总体准确率为 48.7%(95%置信区间,47-51%)。当仅限于中度或复杂疾病(n=484)时,准确率为 77%(95%置信区间,74-81%)。在患有 CHD 的个体中,分类错误发生在 23%。分层算法的判别能力(C 统计量:0.79;95%置信区间,0.77-0.80)通过添加年龄、就诊类型和提供者进一步提高(C 统计量:0.89;95%置信区间,0.88-0.90)。

结论

整个医疗保健系统的代码在检测和分类 CHD 患者方面经常出错。对于中度或复杂疾病的患者,或与其他数据结合使用时,准确性更高。在未来利用 CHD 行政数据集的研究中,应考虑这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4e/5850158/be67fcc1f2d4/JAH3-7-e007378-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验