Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.
Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia.
Mol Cancer Res. 2018 Apr;16(4):728-739. doi: 10.1158/1541-7786.MCR-16-0481. Epub 2018 Jan 12.
G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis. Activation of CXCR4 by its cognate ligand, CXCL12, stimulates Gα13 (GNA13), and subsequently, the small GTPase RhoA, which is required for directional cell migration and the metastatic potential of cancer cells. These studies in prostate cancer cells demonstrate decreased protein expression levels of Gα13 and RhoA upon simultaneous CXCR4/CB2 agonist stimulation. Furthermore, the agonist-induced heterodimer abrogated RhoA-mediated cytoskeletal rearrangement resulting in the attenuation of cell migration and invasion of an endothelial cell barrier. Finally, a reduction was observed in the expression of integrin α5 (ITGA5) upon heterodimerization, supported by decreased cell adhesion to extracellular matrices Taken together, the data identify a novel pharmacologic mechanism for the modulation of tumor cell migration and invasion in the context of metastatic disease. This study investigates a signaling mechanism by which GPCR heterodimerization inhibits cancer cell migration. .
G 蛋白偶联受体 (GPCR) 异二聚化已成为产生替代信号实体的一种手段;然而,受体异二聚体如何影响受体药理学仍然未知。先前的观察结果表明 GPCR、CXCR4 和 CB2(CNR2)之间存在生化拮抗作用,在癌细胞的膜上,激动剂结合的 CXCR4 和激动剂结合的 CB2 形成一种生理上无功能的异二聚体,抑制其转移潜力。然而,负责观察到的功能输出的减少信号实体仍然难以捉摸。这项研究现在描绘了信号机制,即通过同时激动剂处理诱导的 CXCR4 和 CB2 之间的异二聚体缔合,通过抑制 Gα13/RhoA 信号轴,导致 CXCR4 介导的细胞迁移、侵袭和粘附减少。其同源配体 CXCL12 激活 CXCR4 会刺激 Gα13(GNA13),随后是小 GTPase RhoA,这对于细胞的定向迁移和癌细胞的转移潜力是必需的。这些在前列腺癌细胞中的研究表明,同时 CXCR4/CB2 激动剂刺激会导致 Gα13 和 RhoA 的蛋白表达水平降低。此外,激动剂诱导的异二聚体破坏了 RhoA 介导的细胞骨架重排,导致细胞迁移和侵袭内皮细胞屏障的能力减弱。最后,观察到异二聚化后整合素 α5(ITGA5)的表达减少,这得到了细胞对细胞外基质粘附减少的支持。总之,数据确定了一种新的药理学机制,用于调节转移性疾病背景下肿瘤细胞的迁移和侵袭。这项研究调查了 GPCR 异二聚化抑制癌细胞迁移的信号机制。