Suppr超能文献

功能转录组注释和蛋白质-蛋白质相互作用网络分析鉴定出 NEK2、BIRC5 和 TOP2A 为管腔 A 型乳腺癌肥胖患者的潜在靶点。

Functional transcriptomic annotation and protein-protein interaction network analysis identify NEK2, BIRC5, and TOP2A as potential targets in obese patients with luminal A breast cancer.

机构信息

Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha (UCLM), C/Almansa 14, 02008, Albacete, Spain.

Translational Research Unit, University Hospital, Albacete, Spain.

出版信息

Breast Cancer Res Treat. 2018 Apr;168(3):613-623. doi: 10.1007/s10549-017-4652-3. Epub 2018 Jan 12.

Abstract

PURPOSE

Although obesity is a risk factor for breast cancer, little effort has been made in the identification of druggable molecular alterations in obese-breast cancer patients. Tumors are controlled by their surrounding microenvironment, in which the adipose tissue is a main component. In this work, we intended to describe molecular alterations at a transcriptomic and protein-protein interaction (PPI) level between obese and non-obese patients.

METHODS AND RESULTS

Gene expression data of 269 primary breast tumors were compared between normal-weight (BMI < 25, n = 130) and obese (IMC > 30, n = 139) patients. No significant differences were found for the global breast cancer population. However, within the luminal A subtype, upregulation of 81 genes was observed in the obese group (FC ≥ 1.4). Next, we explored the association of these genes with patient outcome, observing that 39 were linked with detrimental outcome. Their PPI map formed highly compact cluster and functional annotation analyses showed that cell cycle, cell proliferation, cell differentiation, and cellular response to extracellular stimuli were the more altered functions. Combined analyses of genes within the described functions are correlated with poor outcome. PPI network analyses for each function were to search for druggable opportunities. We identified 16 potentially druggable candidates. Among them, NEK2, BIRC5, and TOP2A were also found to be amplified in breast cancer, suggesting that they could act as strategic players in the obese-deregulated transcriptome.

CONCLUSION

In summary, our in silico analysis describes molecular alterations of luminal A tumors and proposes a druggable PPI network in obese patients with potential for translation to the clinical practice.

摘要

目的

尽管肥胖是乳腺癌的一个风险因素,但在肥胖乳腺癌患者中鉴定可用药的分子改变方面,几乎没有做出什么努力。肿瘤受其周围微环境的控制,其中脂肪组织是主要组成部分。在这项工作中,我们旨在描述肥胖和非肥胖患者之间在转录组和蛋白质-蛋白质相互作用(PPI)水平上的分子改变。

方法和结果

对 269 例原发性乳腺癌患者的基因表达数据进行了比较,比较对象为正常体重(BMI<25,n=130)和肥胖(BMI>30,n=139)患者。对于整个乳腺癌人群,没有发现显著差异。然而,在 luminal A 亚型中,肥胖组观察到 81 个基因上调(FC≥1.4)。接下来,我们探索了这些基因与患者预后的关系,观察到其中 39 个基因与不良预后相关。它们的 PPI 图谱形成了高度紧凑的簇,功能注释分析表明,细胞周期、细胞增殖、细胞分化和细胞对外界刺激的反应是改变最明显的功能。描述的功能内的基因的综合分析与不良预后相关。对每个功能的 PPI 网络分析旨在寻找可用药的机会。我们确定了 16 个潜在的可用药候选物。其中,NEK2、BIRC5 和 TOP2A 也在乳腺癌中发现扩增,表明它们可能在肥胖失调的转录组中作为战略分子发挥作用。

结论

总之,我们的计算机分析描述了 luminal A 肿瘤的分子改变,并提出了肥胖患者的可用药 PPI 网络,具有转化为临床实践的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3f/5842257/6cbd7a132e14/10549_2017_4652_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验