Brasko Csilla, Smith Kevin, Molnar Csaba, Farago Nora, Hegedus Lili, Balind Arpad, Balassa Tamas, Szkalisity Abel, Sukosd Farkas, Kocsis Katalin, Balint Balazs, Paavolainen Lassi, Enyedi Marton Z, Nagy Istvan, Puskas Laszlo G, Haracska Lajos, Tamas Gabor, Horvath Peter
University of Szeged, Szeged, Hungary Közép fasor 52, 6726, Szeged, Hungary.
School of Computer Science and Communication, KTH Royal Institute of Technology, Lindstedtsvägen 3-5, 10044, Stockholm, Sweden.
Nat Commun. 2018 Jan 15;9(1):226. doi: 10.1038/s41467-017-02628-4.
Quantifying heterogeneities within cell populations is important for many fields including cancer research and neurobiology; however, techniques to isolate individual cells are limited. Here, we describe a high-throughput, non-disruptive, and cost-effective isolation method that is capable of capturing individually targeted cells using widely available techniques. Using high-resolution microscopy, laser microcapture microscopy, image analysis, and machine learning, our technology enables scalable molecular genetic analysis of single cells, targetable by morphology or location within the sample.
量化细胞群体中的异质性对包括癌症研究和神经生物学在内的许多领域都很重要;然而,分离单个细胞的技术有限。在这里,我们描述了一种高通量、无干扰且具有成本效益的分离方法,该方法能够使用广泛可用的技术捕获单个目标细胞。利用高分辨率显微镜、激光显微捕获显微镜、图像分析和机器学习,我们的技术能够对单个细胞进行可扩展的分子遗传分析,这些细胞可通过形态或在样本中的位置进行靶向。