Wang Ke, De Greve Kristiaan, Jauregui Luis A, Sushko Andrey, High Alexander, Zhou You, Scuri Giovanni, Taniguchi Takashi, Watanabe Kenji, Lukin Mikhail D, Park Hongkun, Kim Philip
Department of Physics, Harvard University, Cambridge, MA, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Nat Nanotechnol. 2018 Feb;13(2):128-132. doi: 10.1038/s41565-017-0030-x. Epub 2018 Jan 15.
Electrical confinement and manipulation of charge carriers in semiconducting nanostructures are essential for realizing functional quantum electronic devices. The unique band structure of atomically thin transition metal dichalcogenides (TMDs) offers a new route towards realizing novel 2D quantum electronic devices, such as valleytronic devices and valley-spin qubits . 2D TMDs also provide a platform for novel quantum optoelectronic devices due to their large exciton binding energy. However, controlled confinement and manipulation of electronic and excitonic excitations in TMD nanostructures have been technically challenging due to the prevailing disorder in the material, preventing accurate experimental control of local confinement and tunnel couplings. Here we demonstrate a novel method for creating high-quality heterostructures composed of atomically thin materials that allows for efficient electrical control of excitations. Specifically, we demonstrate quantum transport in the gate-defined, quantum-confined region, observing spin-valley locked quantized conductance in quantum point contacts. We also realize gate-controlled Coulomb blockade associated with confinement of electrons and demonstrate electrical control over charged excitons with tunable local confinement potentials and tunnel couplings. Our work provides a basis for novel quantum opto-electronic devices based on manipulation of charged carriers and excitons.
在半导体纳米结构中对电荷载流子进行电限制和操控对于实现功能性量子电子器件至关重要。原子级薄的过渡金属二硫属化物(TMDs)独特的能带结构为实现新型二维量子电子器件提供了一条新途径,比如谷电子学器件和谷自旋量子比特。由于其大的激子结合能,二维TMDs也为新型量子光电器件提供了一个平台。然而,由于材料中普遍存在的无序性,对TMD纳米结构中的电子和激子激发进行可控的限制和操控在技术上一直具有挑战性,这阻碍了对局部限制和隧道耦合进行精确的实验控制。在此,我们展示了一种用于创建由原子级薄材料组成的高质量异质结构的新方法,该方法能够对激发进行有效的电控制。具体而言,我们展示了在栅极定义的量子限制区域中的量子输运,在量子点接触中观察到自旋 - 谷锁定的量子化电导。我们还实现了与电子限制相关的栅极控制库仑阻塞,并展示了通过可调谐的局部限制势和隧道耦合对带电激子进行电控制。我们的工作为基于对带电载流子和激子进行操控的新型量子光电器件提供了基础。