Bevernaegie Robin, Marcélis Lionel, Laramée-Milette Baptiste, De Winter Julien, Robeyns Koen, Gerbaux Pascal, Hanan Garry S, Elias Benjamin
Université catholique de Louvain (UCL) , Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur, 1 box L4.01.02, B-1348 Louvain-la-Neuve, Belgium.
Département de Chimie, Université de Montréal , Pavillon J.-A. Bombardier, 5155 Chemin de la Rampe, Montréal, Québec H3T 2B1, Canada.
Inorg Chem. 2018 Feb 5;57(3):1356-1367. doi: 10.1021/acs.inorgchem.7b02778. Epub 2018 Jan 16.
Photodynamic therapeutic agents are of key interest in developing new strategies to develop more specific and efficient anticancer treatments. In comparison to classical chemotherapeutic agents, the activity of photodynamic therapeutic compounds can be finely controlled thanks to the light triggering of their photoreactivity. The development of type I photosensitizing agents, which do not rely on the production of ROS, is highly desirable. In this context, we developed new iridium(III) complexes which are able to photoreact with biomolecules; namely, our Ir(III) complexes can oxidize guanine residues under visible light irradiation. We report the synthesis and extensive photophysical characterization of four new Ir(III) complexes, [Ir(ppyCF)(N^N)] [ppyCF = 2-(3,5-bis(trifluoromethyl)phenyl)pyridine) and N^N = 2,2'-dipyridyl (bpy); 2-(pyridin-2-yl)pyrazine (pzpy); 2,2'-bipyrazine (bpz); 1,4,5,8-tetraazaphenanthrene (TAP)]. In addition to an extensive experimental and theoretical study of the photophysics of these complexes, we characterize their photoreactivity toward model redox-active targets and the relevant biological target, the guanine base. We demonstrate that photoinduced electron transfer takes place between the excited Ir(III) complex and guanine which leads to the formation of stable photoproducts, indicating that the targeted guanine is irreversibly damaged. These results pave the way to the elaboration of new type I photosensitizers for targeting cancerous cells.
光动力治疗剂在开发更具特异性和高效性的抗癌治疗新策略方面备受关注。与传统化疗药物相比,光动力治疗化合物的活性可通过光引发其光反应性得到精确控制。开发不依赖活性氧生成的I型光敏剂非常必要。在此背景下,我们合成了能够与生物分子发生光反应的新型铱(III)配合物;具体而言,我们的铱(III)配合物在可见光照射下可氧化鸟嘌呤残基。我们报告了四种新型铱(III)配合物[Ir(ppyCF)(N^N)] [ppyCF = 2-(3,5-双(三氟甲基)苯基)吡啶,N^N = 2,2'-联吡啶(bpy);2-(吡啶-2-基)吡嗪(pzpy);2,2'-联吡嗪(bpz);1,4,5,8-四氮杂菲(TAP)]的合成及广泛的光物理表征。除了对这些配合物的光物理性质进行广泛的实验和理论研究外,我们还表征了它们对模型氧化还原活性靶标和相关生物靶标鸟嘌呤碱基的光反应性。我们证明光诱导电子转移发生在激发态铱(III)配合物和鸟嘌呤之间,导致形成稳定的光产物,这表明靶向的鸟嘌呤被不可逆地破坏。这些结果为开发用于靶向癌细胞的新型I型光敏剂铺平了道路。