Suppr超能文献

将体外和体内生物测定的机器学习模型相结合可提高大鼠致癌性预测。

Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction.

机构信息

Sydney Medical School, The University of Sydney, Australia.

Sydney Medical School, The University of Sydney, Australia.

出版信息

Regul Toxicol Pharmacol. 2018 Apr;94:8-15. doi: 10.1016/j.yrtph.2018.01.008. Epub 2018 Jan 11.

Abstract

In vitro genotoxicity bioassays are cost-efficient methods of assessing potential carcinogens. However, many genotoxicity bioassays are inappropriate for detecting chemicals eliciting non-genotoxic mechanisms, such as tumour promotion, this necessitates the use of in vivo rodent carcinogenicity (IVRC) assays. In silico IVRC modelling could potentially address the low throughput and high cost of this assay. We aimed to develop and combine computational QSAR models of novel bioassays for the prediction of IVRC results and compare with existing software. QSAR models were generated from existing Ames (n = 6512), Syrian Hamster Embryonic (SHE, n = 410), ISSCAN rodent carcinogenicity (ISC, n = 834) and GreenScreen GADD45a-GFP (n = 1415) chemical datasets. These models mapped the molecular descriptors of each compound to their respective assay result using machine learning algorithms (adaboost, k-Nearest Neighbours, C.45 Decision Tree, Multilayer Perceptron, Random Forest). The best performing models were combined with k-Nearest Neighbours to create a cascade model for IVRC prediction. High QSAR model performance was observed from ten time 10-fold cross-validation with above 80% accuracy and 0.85 AUC for each assay dataset. The cascade model predicted rat carcinogenicity with 69.3% accuracy and 0.700 AUC. This study demonstrates the novelty of a combined approach for IVRC prediction, with higher performance than existing software.

摘要

体外遗传毒性生物测定是评估潜在致癌物质的一种具有成本效益的方法。然而,许多遗传毒性生物测定方法不适合检测引发非遗传毒性机制的化学物质,例如肿瘤促进,这就需要使用体内啮齿动物致癌性(IVRC)测定。基于计算机的 IVRC 模型可能有潜力解决该测定的低通量和高成本问题。我们旨在开发和组合新型生物测定的计算定量构效关系(QSAR)模型,以预测 IVRC 结果,并与现有软件进行比较。QSAR 模型是从现有的艾姆斯(n=6512)、叙利亚仓鼠胚胎(SHE,n=410)、ISSCAN 啮齿动物致癌性(ISC,n=834)和 GreenScreen GADD45a-GFP(n=1415)化学数据集生成的。这些模型使用机器学习算法(自适应增强、k 最近邻、C.45 决策树、多层感知机、随机森林)将每个化合物的分子描述符映射到各自的测定结果。表现最佳的模型与 k 最近邻结合,创建用于 IVRC 预测的级联模型。通过十次 10 倍交叉验证观察到高 QSAR 模型性能,每个测定数据集的准确率均超过 80%,AUC 均超过 0.85。级联模型预测大鼠致癌性的准确率为 69.3%,AUC 为 0.700。这项研究证明了用于 IVRC 预测的组合方法的新颖性,其性能优于现有软件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验