Complex Materials, Department of Materials, ETH Zürich, 8093, Zürich, Switzerland.
Adv Mater. 2018 May;30(19):e1705808. doi: 10.1002/adma.201705808. Epub 2018 Jan 16.
Mechanical gradients are useful to reduce strain mismatches in heterogeneous materials and thus prevent premature failure of devices in a wide range of applications. While complex graded designs are a hallmark of biological materials, gradients in manmade materials are often limited to 1D profiles due to the lack of adequate fabrication tools. Here, a multimaterial 3D-printing platform is developed to fabricate elastomer gradients spanning three orders of magnitude in elastic modulus and used to investigate the role of various bioinspired gradient designs on the local and global mechanical behavior of synthetic materials. The digital image correlation data and finite element modeling indicate that gradients can be effectively used to manipulate the stress state and thus circumvent the weakening effect of defect-rich interfaces or program the failure behavior of heterogeneous materials. Implementing this concept in materials with bioinspired designs can potentially lead to defect-tolerant structures and to materials whose tunable failure facilitates repair of biomedical implants, stretchable electronics, or soft robotics.
机械梯度有助于减少异质材料中的应变不匹配,从而防止各种应用中器件的过早失效。虽然复杂的梯度设计是生物材料的标志,但由于缺乏足够的制造工具,人造材料中的梯度通常仅限于 1D 剖面。在这里,开发了一种多材料 3D 打印平台来制造弹性模量跨越三个数量级的弹性体梯度,并用于研究各种仿生梯度设计对合成材料局部和整体力学行为的影响。数字图像相关数据和有限元建模表明,梯度可有效地用于控制应力状态,从而避免富含缺陷的界面的弱化效应或设计异质材料的失效行为。在具有仿生设计的材料中实现这一概念,可能会导致具有耐缺陷的结构,并使材料的可调谐失效有助于修复生物医学植入物、可拉伸电子产品或软机器人。