Wang Min, Wang Xiuyue, Sun Enyang, Kang Zhenye, Gong Fan, Hou Bin, Yang Gaoqiang, Wu Mingbo, Zhang Feng-Yuan
College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
School of Marine Science and Engineering, Hainan University, Haikou, 570228, People's Republic of China.
Nanomicro Lett. 2025 Sep 8;18(1):61. doi: 10.1007/s40820-025-01907-w.
3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components. It begins with a concise introduction to the principles and classifications of mainstream 3D printing methods relevant to the hydrogen energy sector and proceeds to analyze their specific applications and performance impacts across different device architectures. Finally, the review identifies existing technical challenges and outlines future research directions to accelerate the integration of 3D printing in next-generation low-temperature hydrogen energy systems.
3D打印作为一种通用的增材制造技术,具有高度的设计灵活性、快速原型制作、极少的材料浪费以及制造复杂定制几何形状的能力。这些特性使其特别适用于低温氢电化学转换装置,具体而言,包括质子交换膜燃料电池、质子交换膜电解槽、阴离子交换膜电解槽和碱性电解槽,这些装置需要结构精细的组件,如催化剂层、气体扩散层、电极、多孔传输层和双极板。本综述重点且批判性地总结了将3D打印技术应用于这些关键组件的当前进展。首先简要介绍了与氢能领域相关的主流3D打印方法的原理和分类,接着分析了它们在不同装置架构中的具体应用和性能影响。最后,本综述确定了现有的技术挑战,并概述了未来的研究方向,以加速3D打印在下一代低温氢能系统中的整合。