Departments of Neuroscience and Pharmacology, Harold C Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Drug Development Center, SK biopharmaceuticals Co. Ltd., Seongnam, 13494, Korea.
Sci Rep. 2018 Jan 17;8(1):937. doi: 10.1038/s41598-017-17943-5.
Cellular form and function - and thus normal development and physiology - are specified via proteins that control the organization and dynamic properties of the actin cytoskeleton. Using the Drosophila model, we have recently identified an unusual actin regulatory enzyme, Mical, which is directly activated by F-actin to selectively post-translationally oxidize and destabilize filaments - regulating numerous cellular behaviors. Mical proteins are also present in mammals, but their actin regulatory properties, including comparisons among different family members, remain poorly defined. We now find that each human MICAL family member, MICAL-1, MICAL-2, and MICAL-3, directly induces F-actin dismantling and controls F-actin-mediated cellular remodeling. Specifically, each human MICAL selectively associates with F-actin, which directly induces MICALs catalytic activity. We also find that each human MICAL uses an NADPH-dependent Redox activity to post-translationally oxidize actin's methionine (M) M44/M47 residues, directly dismantling filaments and limiting new polymerization. Genetic experiments also demonstrate that each human MICAL drives F-actin disassembly in vivo, reshaping cells and their membranous extensions. Our results go on to reveal that MsrB/SelR reductase enzymes counteract each MICAL's effect on F-actin in vitro and in vivo. Collectively, our results therefore define the MICALs as an important phylogenetically-conserved family of catalytically-acting F-actin disassembly factors.
细胞形态和功能——以及正常的发育和生理机能——是由控制肌动蛋白细胞骨架组织和动态特性的蛋白质来指定的。通过使用果蝇模型,我们最近发现了一种不寻常的肌动蛋白调节酶 Mical,它可以被 F-actin 直接激活,从而选择性地对肌动蛋白丝进行翻译后氧化和去稳定化,从而调节许多细胞行为。Mical 蛋白也存在于哺乳动物中,但它们的肌动蛋白调节特性,包括不同家族成员之间的比较,仍然定义不明确。我们现在发现,每个人类 MICAL 家族成员 MICAL-1、MICAL-2 和 MICAL-3,都可以直接诱导 F-actin 的解体,并控制 F-actin 介导的细胞重塑。具体来说,每个人类 MICAL 都可以选择性地与 F-actin 结合,这直接诱导了 MICAL 的催化活性。我们还发现,每个人类 MICAL 都使用 NADPH 依赖性氧化还原活性来对肌动蛋白的甲硫氨酸(M)M44/M47 残基进行翻译后氧化,直接分解肌动蛋白丝并限制新的聚合。遗传实验也表明,每个人类 MICAL 都可以在体内驱动 F-actin 的解体,重塑细胞及其膜延伸。我们的结果进一步揭示了 MsrB/SelR 还原酶在体外和体内可以抵消每个 MICAL 对 F-actin 的作用。总的来说,我们的结果因此将 MICAL 定义为一个重要的进化上保守的催化性 F-actin 解体因子家族。