Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.
Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.
Nat Commun. 2024 Nov 12;15(1):9810. doi: 10.1038/s41467-024-54131-2.
MICAL proteins play a crucial role in cellular dynamics by binding and disassembling actin filaments, impacting processes like axon guidance, cytokinesis, and cell morphology. Their cellular activity is tightly controlled, as dysregulation can lead to detrimental effects on cellular morphology. Although previous studies have suggested that MICALs are autoinhibited, and require Rab proteins to become active, the detailed molecular mechanisms remained unclear. Here, we report the cryo-EM structure of human MICAL1 at a nominal resolution of 3.1 Å. Structural analyses, alongside biochemical and functional studies, show that MICAL1 autoinhibition is mediated by an intramolecular interaction between its N-terminal catalytic and C-terminal coiled-coil domains, blocking F-actin interaction. Moreover, we demonstrate that allosteric changes in the coiled-coil domain and the binding of the tripartite assembly of CH-L2α1-LIM domains to the coiled-coil domain are crucial for MICAL activation and autoinhibition. These mechanisms appear to be evolutionarily conserved, suggesting a potential universality across the MICAL family.
MICAL 蛋白通过结合和解聚肌动蛋白丝在细胞动态中发挥着关键作用,影响轴突导向、胞质分裂和细胞形态等过程。它们的细胞活性受到严格控制,因为失调可能对细胞形态产生不利影响。尽管先前的研究表明 MICAL 蛋白自身受到抑制,需要 Rab 蛋白才能激活,但详细的分子机制仍不清楚。在这里,我们报道了人源 MICAL1 的冷冻电镜结构,分辨率为 3.1Å。结构分析,以及生化和功能研究表明,MICAL1 的自身抑制是由其 N 端催化结构域和 C 端卷曲螺旋结构域之间的分子内相互作用介导的,从而阻止 F-actin 的相互作用。此外,我们证明卷曲螺旋结构域的变构变化以及三部分组装的 CH-L2α1-LIM 结构域与卷曲螺旋结构域的结合对于 MICAL 的激活和自身抑制至关重要。这些机制似乎在进化上是保守的,这表明在 MICAL 家族中可能具有普遍性。