Suppr超能文献

高通量药物联合筛选与协同评分方法

Methods for High-throughput Drug Combination Screening and Synergy Scoring.

作者信息

He Liye, Kulesskiy Evgeny, Saarela Jani, Turunen Laura, Wennerberg Krister, Aittokallio Tero, Tang Jing

机构信息

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, PO Box 33, Helsinki, 00014, Finland.

Department of Mathematics and Statistics, University of Turku, Turku, Finland.

出版信息

Methods Mol Biol. 2018;1711:351-398. doi: 10.1007/978-1-4939-7493-1_17.

Abstract

Gene products or pathways that are aberrantly activated in cancer but not in normal tissue hold great promises for being effective and safe anticancer therapeutic targets. Many targeted drugs have entered clinical trials but so far showed limited efficacy mostly due to variability in treatment responses and often rapidly emerging resistance. Toward more effective treatment options, we will need multi-targeted drugs or drug combinations, which selectively inhibit the viability and growth of cancer cells and block distinct escape mechanisms for the cells to become resistant. Functional profiling of drug combinations requires careful experimental design and robust data analysis approaches. At the Institute for Molecular Medicine Finland (FIMM), we have developed an experimental-computational pipeline for high-throughput screening of drug combination effects in cancer cells. The integration of automated screening techniques with advanced synergy scoring tools allows for efficient and reliable detection of synergistic drug interactions within a specific window of concentrations, hence accelerating the identification of potential drug combinations for further confirmatory studies.

摘要

在癌症中异常激活但在正常组织中未激活的基因产物或信号通路,极有可能成为有效且安全的抗癌治疗靶点。许多靶向药物已进入临床试验阶段,但迄今为止疗效有限,这主要是由于治疗反应的变异性以及耐药性往往迅速出现。为了获得更有效的治疗方案,我们需要多靶点药物或药物组合,它们能够选择性地抑制癌细胞的活力和生长,并阻断细胞产生耐药性的不同逃逸机制。药物组合的功能分析需要精心的实验设计和强大的数据分析方法。在芬兰分子医学研究所(FIMM),我们开发了一种实验 - 计算流程,用于高通量筛选癌细胞中的药物组合效应。将自动化筛选技术与先进的协同评分工具相结合,能够在特定浓度范围内高效、可靠地检测协同药物相互作用,从而加速潜在药物组合的识别,以便进行进一步的验证研究。

相似文献

引用本文的文献

2
Anticancer drug synergy prediction based on CatBoost.基于CatBoost的抗癌药物协同作用预测
PeerJ Comput Sci. 2025 May 19;11:e2829. doi: 10.7717/peerj-cs.2829. eCollection 2025.

本文引用的文献

7
Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.在大规模小分子敏感性数据集中利用连通性
Cancer Discov. 2015 Nov;5(11):1210-23. doi: 10.1158/2159-8290.CD-15-0235. Epub 2015 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验