Hong Yuqi, Zhao Qichang, Wang Jianxin
Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf326.
Drug combination therapy is an effective strategy for cancer treatment, enhancing drug efficacy and reducing toxic side effects. However, in vitro drug screening experiments are time-consuming and expensive, necessitating the development of computational methods for drug synergy prediction. While current methods focus on molecular chemical structures, they often overlook the biological context, limiting their ability to capture complex drug synergies.
In this work, we propose MADSP, a novel method for anti-cancer drug synergy prediction that integrates target and pathway knowledge for a more comprehensive understanding of systems biology. MADSP first incorporates chemical structure, target, and pathway features of drugs, using a multi-head self-attention mechanism to learn a unified drug representation. It then integrates protein-protein interaction data with omics data from cell lines, extracting a low-dimensional dense embedding of cell lines via an autoencoder. Finally, the synergy scores for drug combinations are predicted using a fully connected neural network. Experiments on benchmark datasets demonstrate that MADSP outperforms state-of-the-art methods. The ablation study reveals that multi-source information fusion and attention mechanisms significantly enhance model performance. The case study further illustrates the practical applicability of MADSP as a powerful tool for drug synergy prediction, offering potential for advancing cancer treatment strategies.
MADSP is available at https://github.com/Hhyqi/MADSP.
联合药物疗法是一种有效的癌症治疗策略,可提高药物疗效并减少毒副作用。然而,体外药物筛选实验既耗时又昂贵,因此需要开发用于药物协同作用预测的计算方法。虽然目前的方法侧重于分子化学结构,但它们往往忽略了生物学背景,限制了其捕捉复杂药物协同作用的能力。
在这项工作中,我们提出了MADSP,一种用于抗癌药物协同作用预测的新方法,该方法整合了靶点和通路知识,以便更全面地理解系统生物学。MADSP首先纳入药物的化学结构、靶点和通路特征,使用多头自注意力机制学习统一的药物表示。然后,它将蛋白质-蛋白质相互作用数据与来自细胞系的组学数据整合,通过自动编码器提取细胞系的低维密集嵌入。最后,使用全连接神经网络预测药物组合的协同分数。在基准数据集上的实验表明,MADSP优于现有方法。消融研究表明,多源信息融合和注意力机制显著提高了模型性能。案例研究进一步说明了MADSP作为药物协同作用预测的强大工具的实际适用性,为推进癌症治疗策略提供了潜力。