Suppr超能文献

从脉冲序列重建脉冲耦合振荡器网络。

Reconstructing networks of pulse-coupled oscillators from spike trains.

作者信息

Cestnik Rok, Rosenblum Michael

机构信息

Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam-Golm, Germany.

Department of Human Movement Sciences, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, van der Boechorststraat 9, Amsterdam, Netherlands.

出版信息

Phys Rev E. 2017 Jul;96(1-1):012209. doi: 10.1103/PhysRevE.96.012209. Epub 2017 Jul 12.

Abstract

We present an approach for reconstructing networks of pulse-coupled neuronlike oscillators from passive observation of pulse trains of all nodes. It is assumed that units are described by their phase response curves and that their phases are instantaneously reset by incoming pulses. Using an iterative procedure, we recover the properties of all nodes, namely their phase response curves and natural frequencies, as well as strengths of all directed connections.

摘要

我们提出了一种从对所有节点脉冲序列的被动观测中重建脉冲耦合类神经元振荡器网络的方法。假设单元由其相位响应曲线描述,并且它们的相位会被传入脉冲瞬间重置。通过迭代过程,我们恢复所有节点的属性,即它们的相位响应曲线和固有频率,以及所有有向连接的强度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验