Institute of Applied Physics 'Nello Carrara', National Research Council (IFAC-CNR), via Madonna del Piano 10, Sesto Fiorentino, Italy.
Sci Rep. 2018 Jan 18;8(1):1033. doi: 10.1038/s41598-018-19558-w.
An advanced optofluidic system for protein detection based on Raman signal amplification via dewetting and molecular gathering within temporary mesoscale assemblies is presented. The evaporation of a microliter volume of protein solution deposited in a circular microwell precisely follows an outward-receding geometry. Herein the combination of liquid withdrawal with intermolecular interactions induces the formation of self-assembled molecular domains at the solid-liquid interface. Through proper control of the evaporation rate, amplitude of the assemblies and time for spectral collection at the liquid edge are extensively raised, resulting in a local enhancement and refinement of the Raman response, respectively. Further signal amplification is obtained by taking advantage of the intense local electromagnetic fields generated upon adding a plasmonic coating to the microwell. Major advantages of this optofluidic method lie in the obtainment of high-quality, high-sensitivity Raman spectra with detection limit down to sub-micromolar values. Peculiarly, the assembled proteins in the liquid edge region maintain their native-like state without displaying spectral changes usually occurring when dried drop deposits are considered.
本文提出了一种基于液滴蒸发过程中表面张力和分子间相互作用诱导暂时形成的亚微米尺度组装体中蛋白质的再聚集和拉曼信号放大的新型微流控光学蛋白质检测系统。当在圆形微池中沉积的蛋白质溶液蒸发时,其体积会精确地遵循从外向内的收缩几何形状。在此过程中,通过控制蒸发速率,提高了组装体的幅度和在液体边缘进行光谱采集的时间,从而分别实现了拉曼响应的局部增强和细化。通过在微池中添加等离子体涂层,可以利用在其表面产生的强局域电磁场进一步实现信号放大。该光学微流控方法的主要优点在于可以获得高质量、高灵敏度的拉曼光谱,检测限低至亚微米级。特别的是,在液体边缘区域聚集的蛋白质保持其天然状态,而不会显示出通常在干燥液滴沉积时发生的光谱变化。