Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP "1177", 3018, Sfax, Tunisia.
BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
Sci Rep. 2018 Jan 18;8(1):1137. doi: 10.1038/s41598-018-19493-w.
Engineering osmotolerant plants is a challenge for modern agriculture. An interaction between osmotic stress response and phosphate homeostasis has been reported in plants, but the identity of molecules involved in this interaction remains unknown. In this study we assessed the role of phytic acid (PA) in response to osmotic stress and/or phosphate deficiency in Arabidopsis thaliana. For this purpose, we used Arabidopsis lines (L7 and L9) expressing a bacterial beta-propeller phytase PHY-US417, and a mutant in inositol polyphosphate kinase 1 gene (ipk1-1), which were characterized by low PA content, 40% (L7 and L9) and 83% (ipk1-1) of the wild-type (WT) plants level. We show that the PHY-overexpressor lines have higher osmotolerance and lower sensitivity to abscisic acid than ipk1-1 and WT. Furthermore, PHY-overexpressors showed an increase by more than 50% in foliar ascorbic acid levels and antioxidant enzyme activities compared to ipk1-1 and WT plants. Finally, PHY-overexpressors are more tolerant to combined mannitol stresses and phosphate deficiency than WT plants. Overall, our results demonstrate that the modulation of PA improves plant growth under osmotic stress, likely via stimulation of enzymatic and non-enzymatic antioxidant systems, and that beside its regulatory role in phosphate homeostasis, PA may be also involved in fine tuning osmotic stress response in plants.
工程耐渗植物是现代农学的一个挑战。已在植物中报道了渗透胁迫响应和磷酸盐稳态之间的相互作用,但参与这种相互作用的分子的身份仍然未知。在本研究中,我们评估了植酸(PA)在拟南芥响应渗透胁迫和/或磷酸盐缺乏中的作用。为此,我们使用了表达细菌β-三叶蛋白植酸酶 PHY-US417的拟南芥系(L7 和 L9)和肌醇多磷酸激酶 1 基因(ipk1-1)突变体,其特征是 PA 含量低,野生型(WT)植物水平的 40%(L7 和 L9)和 83%(ipk1-1)。我们表明,与 ipk1-1 和 WT 相比,PHY 过表达系具有更高的耐渗性和对脱落酸的低敏感性。此外,与 ipk1-1 和 WT 植物相比,PHY 过表达系的叶片抗坏血酸水平和抗氧化酶活性增加了 50%以上。最后,与 WT 植物相比,PHY 过表达系对甘露醇胁迫和磷酸盐缺乏的综合胁迫更具耐受性。总体而言,我们的结果表明,PA 的调节可改善渗透胁迫下的植物生长,可能是通过刺激酶和非酶抗氧化系统,除了其在磷酸盐稳态中的调节作用外,PA 还可能参与植物渗透胁迫响应的微调。