Suppr超能文献

不同麻醉剂诱导的镇静患者脑电图特征

Characteristics of electroencephalogram signatures in sedated patients induced by various anesthetic agents.

作者信息

Choi Byung-Moon

机构信息

Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

出版信息

J Dent Anesth Pain Med. 2017 Dec;17(4):241-251. doi: 10.17245/jdapm.2017.17.4.241. Epub 2017 Dec 28.

Abstract

Devices that monitor the depth of hypnosis based on the electroencephalogram (EEG) have long been commercialized, and clinicians use these to titrate the dosage of hypnotic agents. However, these have not yet been accepted as standard monitoring devices for anesthesiology. The primary reason is that the use of these monitoring devices does not completely prevent awareness during surgery, and the development of these devices has not taken into account the neurophysiological mechanisms of hypnotic agents, thus making it possible to show different levels of unconsciousness in the same brain status. An alternative is to monitor EEGs that are not signal processed with numerical values presented by these monitoring devices. Several studies have reported that power spectral analysis alone can distinguish the effects of different hypnotic agents on consciousness changes. This paper introduces the basic concept of power spectral analysis and introduces the EEG characteristics of various hypnotic agents that are used in sedation.

摘要

基于脑电图(EEG)监测催眠深度的设备早已商业化,临床医生使用这些设备来滴定催眠药物的剂量。然而,这些设备尚未被接受为麻醉学的标准监测设备。主要原因是使用这些监测设备并不能完全防止手术期间的知晓,并且这些设备的开发没有考虑催眠药物的神经生理机制,因此在相同的脑状态下可能显示出不同程度的无意识状态。另一种方法是监测未经这些监测设备以数值形式进行信号处理的脑电图。多项研究报告称,仅功率谱分析就能区分不同催眠药物对意识变化的影响。本文介绍了功率谱分析的基本概念,并介绍了用于镇静的各种催眠药物的脑电图特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/970d/5766087/e757de4214d7/jdapm-17-241-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验