Suppr超能文献

基于宫缩相关胎儿心率变异性分析的胎儿窘迫检出率。

Detection rate of fetal distress using contraction-dependent fetal heart rate variability analysis.

机构信息

Faculty of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.

出版信息

Physiol Meas. 2018 Feb 28;39(2):025008. doi: 10.1088/1361-6579/aaa925.

Abstract

OBJECTIVE

Monitoring of the fetal condition during labor is currently performed by cardiotocograpy (CTG). Despite the use of CTG in clinical practice, CTG interpretation suffers from a high inter- and intra-observer variability and a low specificity. In addition to CTG, analysis of fetal heart rate variability (HRV) has been shown to provide information on fetal distress. However, fetal HRV can be strongly influenced by uterine contractions, particularly during the second stage of labor. Therefore, the aim of this study is to examine if distinguishing contractions from rest periods can improve the detection rate of HRV features for fetal distress during the second stage of labor.

APPROACH

We used a dataset of 100 recordings, containing 20 cases of fetuses with adverse outcome. The most informative HRV features were selected by a genetic algorithm and classification performance was evaluated using support vector machines.

MAIN RESULTS

Classification performance of fetal heart rate segments closest to birth improved from a geometric mean of 70% to 79%. If the classifier was used to indicate fetal distress over time, the geometric mean at 15 minutes before birth improved from 60% to 72%.

SIGNIFICANCE

Our results show that combining contraction-dependent HRV features with HRV features calculated over the entire fetal heart rate signal improves the detection rate of fetal distress.

摘要

目的

目前分娩期间胎儿状况的监测是通过胎心监护图(CTG)进行的。尽管 CTG 在临床实践中得到了应用,但 CTG 解读存在很高的观察者内和观察者间变异性,特异性较低。除 CTG 外,胎儿心率变异性(HRV)的分析已被证明可以提供关于胎儿窘迫的信息。然而,胎儿 HRV 会受到子宫收缩的强烈影响,尤其是在第二产程期间。因此,本研究的目的是探讨区分收缩期和休息期是否可以提高第二产程中 HRV 特征检测胎儿窘迫的检出率。

方法

我们使用了包含 20 例不良结局胎儿的 100 个记录数据集。通过遗传算法选择了最具信息量的 HRV 特征,并使用支持向量机评估了分类性能。

主要结果

最接近分娩的胎儿心率段的分类性能从几何平均值 70%提高到 79%。如果分类器用于随时间指示胎儿窘迫,那么在分娩前 15 分钟的几何平均值从 60%提高到 72%。

意义

我们的结果表明,将与收缩相关的 HRV 特征与整个胎儿心率信号上计算的 HRV 特征相结合,可以提高胎儿窘迫的检出率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验