Suppr超能文献

通过高斯过程集合识别子宫收缩

IDENTIFICATION OF UTERINE CONTRACTIONS BY AN ENSEMBLE OF GAUSSIAN PROCESSES.

作者信息

Yang Liu, Heiselman Cassandra, Quirk J Gerald, Djurić Petar M

机构信息

Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA.

Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook, NY 11794, USA.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2021 Jun;2021. doi: 10.1109/icassp39728.2021.9414041. Epub 2021 May 13.

Abstract

Identifying uterine contractions with the aid of machine learning methods is necessary vis-á-vis their use in combination with fetal heart rates and other clinical data for the assessment of a fetus wellbeing. In this paper, we study contraction identification by processing noisy signals due to uterine activities. We propose a complete four-step method where we address the imbalanced classification problem with an ensemble Gaussian process classifier, where the Gaussian process latent variable model is used as a decision-maker. The results of both simulation and real data show promising performance compared to existing methods.

摘要

借助机器学习方法识别子宫收缩对于将其与胎儿心率及其他临床数据相结合以评估胎儿健康状况而言是必要的。在本文中,我们通过处理由子宫活动产生的噪声信号来研究收缩识别。我们提出了一种完整的四步方法,其中我们使用集成高斯过程分类器来解决不平衡分类问题,高斯过程潜在变量模型用作决策器。与现有方法相比,模拟和实际数据的结果均显示出良好的性能。

相似文献

1
IDENTIFICATION OF UTERINE CONTRACTIONS BY AN ENSEMBLE OF GAUSSIAN PROCESSES.通过高斯过程集合识别子宫收缩
Proc IEEE Int Conf Acoust Speech Signal Process. 2021 Jun;2021. doi: 10.1109/icassp39728.2021.9414041. Epub 2021 May 13.
3
BOOST ENSEMBLE LEARNING FOR CLASSIFICATION OF CTG SIGNALS.用于CTG信号分类的增强集成学习
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:1316-1320. doi: 10.1109/icassp43922.2022.9746503. Epub 2022 Apr 27.
4
Fetal movement during labor.
Am J Obstet Gynecol. 1991 Oct;165(4 Pt 1):1073-6. doi: 10.1016/0002-9378(91)90473-5.
5
Adaptive Fusion Based Method for Imbalanced Data Classification.基于自适应融合的不平衡数据分类方法
Front Neurorobot. 2022 Feb 28;16:827913. doi: 10.3389/fnbot.2022.827913. eCollection 2022.
6
Cardiotocography analysis by empirical dynamic modeling and Gaussian processes.基于经验动态建模和高斯过程的胎心监护分析
Front Bioeng Biotechnol. 2023 Jan 12;10:1057807. doi: 10.3389/fbioe.2022.1057807. eCollection 2022.
7
INFERENCE ABOUT CAUSALITY FROM CARDIOTOCOGRAPHY SIGNALS USING GAUSSIAN PROCESSES.利用高斯过程从心电图信号推断因果关系
Proc IEEE Int Conf Acoust Speech Signal Process. 2019 May;2019:2852-2856. doi: 10.1109/icassp.2019.8683052. Epub 2019 Apr 17.
10
Deep Generative Mixture Model for Robust Imbalance Classification.深度生成混合模型用于稳健的不平衡分类。
IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):2897-2912. doi: 10.1109/TPAMI.2022.3178914. Epub 2023 Feb 3.

本文引用的文献

6
Electrohysterographic detection of uterine contractions in term pregnancy.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:5851-4. doi: 10.1109/EMBC.2015.7319722.
7
Open access intrapartum CTG database.开放获取的产时电子胎心监护数据库
BMC Pregnancy Childbirth. 2014 Jan 13;14:16. doi: 10.1186/1471-2393-14-16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验