Yang Liu, Heiselman Cassandra, Quirk J Gerald, Djurić Petar M
Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA 11794-2350.
Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook University, Stony Brook, NY, USA 11794-2350.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022. doi: 10.1109/icassp43922.2022.9747598. Epub 2022 Apr 27.
The computer-aided interpretation of fetal heart rate (FHR) and uterine contraction (UC) has not been developed well enough for wide use in delivery rooms. The main challenges still lie in the lack of unclear and nonstandard labels for cardiotocography (CTG) recordings, and the timely prediction of fetal state during monitoring. Rather than traditional supervised approaches to FHR classification, this paper demonstrates a way to understand the UC-dependent FHR responses in an unsupervised manner. In this work, we provide a complete method for FHR-UC segment clustering and analysis via the Gaussian process latent variable model, and density-based spatial clustering. We map the UC-dependent FHR segments into a space with a visual dimension and propose a trajectory-based FHR interpretation method. Three metrics of FHR trajectory are defined and an open-access CTG database is used for testing the proposed method.
计算机辅助的胎儿心率(FHR)和子宫收缩(UC)解释技术尚未发展到足以在产房广泛应用的程度。主要挑战仍然在于缺乏清晰且标准的产程图(CTG)记录标签,以及监测期间胎儿状态的及时预测。本文并非采用传统的FHR分类监督方法,而是展示了一种以无监督方式理解UC依赖的FHR反应的方法。在这项工作中,我们通过高斯过程潜在变量模型和基于密度的空间聚类,提供了一种完整的FHR-UC段聚类和分析方法。我们将UC依赖的FHR段映射到具有视觉维度的空间中,并提出一种基于轨迹的FHR解释方法。定义了FHR轨迹的三个指标,并使用一个开放获取的CTG数据库来测试所提出的方法。