Suppr超能文献

收缩依赖性胎儿心率段的无监督聚类与分析

UNSUPERVISED CLUSTERING AND ANALYSIS OF CONTRACTION-DEPENDENT FETAL HEART RATE SEGMENTS.

作者信息

Yang Liu, Heiselman Cassandra, Quirk J Gerald, Djurić Petar M

机构信息

Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA 11794-2350.

Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook University, Stony Brook, NY, USA 11794-2350.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022. doi: 10.1109/icassp43922.2022.9747598. Epub 2022 Apr 27.

Abstract

The computer-aided interpretation of fetal heart rate (FHR) and uterine contraction (UC) has not been developed well enough for wide use in delivery rooms. The main challenges still lie in the lack of unclear and nonstandard labels for cardiotocography (CTG) recordings, and the timely prediction of fetal state during monitoring. Rather than traditional supervised approaches to FHR classification, this paper demonstrates a way to understand the UC-dependent FHR responses in an unsupervised manner. In this work, we provide a complete method for FHR-UC segment clustering and analysis via the Gaussian process latent variable model, and density-based spatial clustering. We map the UC-dependent FHR segments into a space with a visual dimension and propose a trajectory-based FHR interpretation method. Three metrics of FHR trajectory are defined and an open-access CTG database is used for testing the proposed method.

摘要

计算机辅助的胎儿心率(FHR)和子宫收缩(UC)解释技术尚未发展到足以在产房广泛应用的程度。主要挑战仍然在于缺乏清晰且标准的产程图(CTG)记录标签,以及监测期间胎儿状态的及时预测。本文并非采用传统的FHR分类监督方法,而是展示了一种以无监督方式理解UC依赖的FHR反应的方法。在这项工作中,我们通过高斯过程潜在变量模型和基于密度的空间聚类,提供了一种完整的FHR-UC段聚类和分析方法。我们将UC依赖的FHR段映射到具有视觉维度的空间中,并提出一种基于轨迹的FHR解释方法。定义了FHR轨迹的三个指标,并使用一个开放获取的CTG数据库来测试所提出的方法。

相似文献

1
UNSUPERVISED CLUSTERING AND ANALYSIS OF CONTRACTION-DEPENDENT FETAL HEART RATE SEGMENTS.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022. doi: 10.1109/icassp43922.2022.9747598. Epub 2022 Apr 27.
2
eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images.
Comput Methods Programs Biomed. 2018 Mar;156:133-139. doi: 10.1016/j.cmpb.2017.12.030. Epub 2018 Jan 2.
3
Longitudinal study of computerized cardiotocography in early fetal growth restriction.
Ultrasound Obstet Gynecol. 2017 Jul;50(1):71-78. doi: 10.1002/uog.17215.
4
CTG Analyzer: A graphical user interface for cardiotocography.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2606-2609. doi: 10.1109/EMBC.2017.8037391.
5
Developments in CTG analysis.
Baillieres Clin Obstet Gynaecol. 1996 Jun;10(2):185-209. doi: 10.1016/s0950-3552(96)80033-2.
7
Computerised Cardiotocography Analysis for the Automated Detection of Fetal Compromise during Labour: A Review.
Bioengineering (Basel). 2023 Aug 25;10(9):1007. doi: 10.3390/bioengineering10091007.
8
Hybrid-FHR: a multi-modal AI approach for automated fetal acidosis diagnosis.
BMC Med Inform Decis Mak. 2024 Jan 22;24(1):19. doi: 10.1186/s12911-024-02423-4.
9
Cardiotocography analysis by empirical dynamic modeling and Gaussian processes.
Front Bioeng Biotechnol. 2023 Jan 12;10:1057807. doi: 10.3389/fbioe.2022.1057807. eCollection 2022.
10
An effective digitization method for CTG paper report with binary background grids taken by smartphone.
Comput Methods Programs Biomed. 2021 Mar;200:105872. doi: 10.1016/j.cmpb.2020.105872. Epub 2020 Nov 30.

引用本文的文献

1
Approaches to Preventing Intrapartum Fetal Injury.
Front Pediatr. 2022 Sep 23;10:915344. doi: 10.3389/fped.2022.915344. eCollection 2022.

本文引用的文献

1
Unsupervised Detection of Anomalies in Fetal Heart Rate Tracings using Phase Space Reconstruction.
Proc Eur Signal Process Conf EUSIPCO. 2021 Aug;2021:1321-1325. doi: 10.23919/eusipco54536.2021.9616264. Epub 2021 Dec 8.
2
IDENTIFICATION OF UTERINE CONTRACTIONS BY AN ENSEMBLE OF GAUSSIAN PROCESSES.
Proc IEEE Int Conf Acoust Speech Signal Process. 2021 Jun;2021. doi: 10.1109/icassp39728.2021.9414041. Epub 2021 May 13.
3
DISCOVERING CAUSALITIES FROM CARDIOTOCOGRAPHY SIGNALS USING IMPROVED CONVERGENT CROSS MAPPING WITH GAUSSIAN PROCESSES.
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:1309-1313. doi: 10.1109/ICASSP40776.2020.9053462. Epub 2020 May 14.
4
Computer-Aided Diagnosis System of Fetal Hypoxia Incorporating Recurrence Plot With Convolutional Neural Network.
Front Physiol. 2019 Mar 12;10:255. doi: 10.3389/fphys.2019.00255. eCollection 2019.
6
Electronic fetal monitoring or cardiotocography, 50 years later: what's in a name?
Am J Obstet Gynecol. 2018 Jun;218(6):545-546. doi: 10.1016/j.ajog.2018.03.011.
7
Detection rate of fetal distress using contraction-dependent fetal heart rate variability analysis.
Physiol Meas. 2018 Feb 28;39(2):025008. doi: 10.1088/1361-6579/aaa925.
8
Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models.
PLoS One. 2017 Sep 27;12(9):e0185417. doi: 10.1371/journal.pone.0185417. eCollection 2017.
9
Using uterine activity to improve fetal heart rate variability analysis for detection of asphyxia during labor.
Physiol Meas. 2016 Mar;37(3):387-400. doi: 10.1088/0967-3334/37/3/387. Epub 2016 Feb 10.
10
FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography.
Int J Gynaecol Obstet. 2015 Oct;131(1):13-24. doi: 10.1016/j.ijgo.2015.06.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验