Suppr超能文献

利用病毒特征隐藏马尔可夫模型扩展人类病毒生态学研究

Extension of the viral ecology in humans using viral profile hidden Markov models.

作者信息

Bzhalava Zurab, Hultin Emilie, Dillner Joakim

机构信息

Dept. of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.

出版信息

PLoS One. 2018 Jan 19;13(1):e0190938. doi: 10.1371/journal.pone.0190938. eCollection 2018.

Abstract

When human samples are sequenced, many assembled contigs are "unknown", as conventional alignments find no similarity to known sequences. Hidden Markov models (HMM) exploit the positions of specific nucleotides in protein-encoding codons in various microbes. The algorithm HMMER3 implements HMM using a reference set of sequences encoding viral proteins, "vFam". We used HMMER3 analysis of "unknown" human sample-derived sequences and identified 510 contigs distantly related to viruses (Anelloviridae (n = 1), Baculoviridae (n = 34), Circoviridae (n = 35), Caulimoviridae (n = 3), Closteroviridae (n = 5), Geminiviridae (n = 21), Herpesviridae (n = 10), Iridoviridae (n = 12), Marseillevirus (n = 26), Mimiviridae (n = 80), Phycodnaviridae (n = 165), Poxviridae (n = 23), Retroviridae (n = 6) and 89 contigs related to described viruses not yet assigned to any taxonomic family). In summary, we find that analysis using the HMMER3 algorithm and the "vFam" database greatly extended the detection of viruses in biospecimens from humans.

摘要

对人类样本进行测序时,许多组装的重叠群是“未知的”,因为传统比对未发现与已知序列有相似性。隐马尔可夫模型(HMM)利用各种微生物中蛋白质编码密码子中特定核苷酸的位置。HMMER3算法使用一组编码病毒蛋白的序列“vFam”来实现HMM。我们对源自人类样本的“未知”序列进行了HMMER3分析,鉴定出510个与病毒有远缘关系的重叠群(圆环病毒科(n = 1)、杆状病毒科(n = 34)、环状病毒科(n = 35)、花椰菜花叶病毒科(n = 3)、长线形病毒科(n = 5)、双生病毒科(n = 21)、疱疹病毒科(n = 10)、虹彩病毒科(n = 12)、马赛病毒(n = 26)、巨型病毒科(n = 80)、藻DNA病毒科(n = 165)、痘病毒科(n = 23)、逆转录病毒科(n = 6))以及89个与已描述但尚未归入任何分类科的病毒相关的重叠群。总之,我们发现使用HMMER3算法和“vFam”数据库进行分析极大地扩展了对人类生物样本中病毒的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b7e/5774701/549646a598d7/pone.0190938.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验