Suppr超能文献

一种用于接受手术儿童30天死亡率的新型风险分类系统。

A novel risk classification system for 30-day mortality in children undergoing surgery.

作者信息

Akbilgic Oguz, Langham Max R, Walter Arianne I, Jones Tamekia L, Huang Eunice Y, Davis Robert L

机构信息

University of Tennessee Health Science Center-Oak Ridge National Laboratory Center for Biomedical Informatics, Memphis, Tennessee, United States of America.

Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.

出版信息

PLoS One. 2018 Jan 19;13(1):e0191176. doi: 10.1371/journal.pone.0191176. eCollection 2018.

Abstract

A simple, objective and accurate way of grouping children undergoing surgery into clinically relevant risk groups is needed. The purpose of this study, is to develop and validate a preoperative risk classification system for postsurgical 30-day mortality for children undergoing a wide variety of operations. The National Surgical Quality Improvement Project-Pediatric participant use file data for calendar years 2012-2014 was analyzed to determine preoperative variables most associated with death within 30 days of operation (D30). Risk groups were created using classification tree analysis based on these preoperative variables. The resulting risk groups were validated using 2015 data, and applied to neonates and higher risk CPT codes to determine validity in high-risk subpopulations. A five-level risk classification was found to be most accurate. The preoperative need for ventilation, oxygen support, inotropic support, sepsis, the need for emergent surgery and a do not resuscitate order defined non-overlapping groups with observed rates of D30 that vary from 0.075% (Very Low Risk) to 38.6% (Very High Risk). When CPT codes where death was never observed are eliminated or when the system is applied to neonates, the groupings remained predictive of death in an ordinal manner.

摘要

需要一种简单、客观且准确的方法,将接受手术的儿童分组到具有临床相关性的风险组中。本研究的目的是开发并验证一种针对接受各种手术的儿童术后30天死亡率的术前风险分类系统。分析了2012 - 2014历年国家外科质量改进项目 - 儿科参与者使用文件数据,以确定与术后30天内死亡(D30)最相关的术前变量。基于这些术前变量,使用分类树分析创建风险组。使用2015年数据对所得风险组进行验证,并应用于新生儿和高风险CPT编码,以确定在高风险亚组中的有效性。发现五级风险分类最为准确。术前对通气、氧气支持、血管活性药物支持、败血症、急诊手术需求以及不进行心肺复苏医嘱定义了不重叠的组,观察到的D30发生率从0.075%(极低风险)到38.6%(极高风险)不等。当消除从未观察到死亡的CPT编码,或将该系统应用于新生儿时,分组仍以有序方式预测死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/084a/5774754/7db5602e467f/pone.0191176.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验