Suppr超能文献

基于强度和梯度空间的可变邻域搜索的腹主动脉瘤外膜分割。

Outer Wall Segmentation of Abdominal Aortic Aneurysm by Variable Neighborhood Search Through Intensity and Gradient Spaces.

机构信息

Department Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.

Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom, 73170, Thailand.

出版信息

J Digit Imaging. 2018 Aug;31(4):490-504. doi: 10.1007/s10278-018-0049-z.

Abstract

Aortic aneurysm segmentation remains a challenge. Manual segmentation is a time-consuming process which is not practical for routine use. To address this limitation, several automated segmentation techniques for aortic aneurysm have been developed, such as edge detection-based methods, partial differential equation methods, and graph partitioning methods. However, automatic segmentation of aortic aneurysm is difficult due to high pixel similarity to adjacent tissue and a lack of color information in the medical image, preventing previous work from being applicable to difficult cases. This paper uses uses a variable neighborhood search that alternates between intensity-based and gradient-based segmentation techniques. By alternating between intensity and gradient spaces, the search can escape from local optima of each space. The experimental results demonstrate that the proposed method outperforms the other existing segmentation methods in the literature, based on measurements of dice similarity coefficient and jaccard similarity coefficient at the pixel level. In addition, it is shown to perform well for cases that are difficult to segment.

摘要

主动脉瘤分割仍然是一个挑战。手动分割是一个耗时的过程,不适用于常规使用。为了解决这个限制,已经开发了几种用于主动脉瘤的自动分割技术,例如基于边缘检测的方法、偏微分方程方法和图划分方法。然而,由于与相邻组织的像素相似度高,并且医学图像中缺乏颜色信息,因此主动脉瘤的自动分割很困难,这使得以前的工作无法适用于困难的情况。本文使用基于可变邻域搜索的方法,在基于强度和基于梯度的分割技术之间交替。通过在强度和梯度空间之间交替,搜索可以摆脱每个空间的局部最优解。实验结果表明,基于像素级的骰子相似系数和杰卡德相似系数的测量,所提出的方法优于文献中现有的其他分割方法。此外,它在分割困难的情况下表现良好。

相似文献

8
3D segmentation of abdominal aorta from CT-scan and MR images.从 CT 扫描和 MRI 图像中对腹部主动脉进行 3D 分割。
Comput Med Imaging Graph. 2012 Jun;36(4):294-303. doi: 10.1016/j.compmedimag.2011.12.001. Epub 2012 Jan 17.

引用本文的文献

5
Abdominal Aortic Aneurysm Segmentation Using Convolutional Neural Networks Trained with Images Generated with a Synthetic Shape Model.使用基于合成形状模型生成的图像训练的卷积神经网络进行腹主动脉瘤分割
Mach Learn Med Eng Cardiovasc Health Intravasc Imaging Comput Assist Stenting (2019). 2019;11794:167-174. doi: 10.1007/978-3-030-33327-0_20. Epub 2019 Oct 12.

本文引用的文献

8
Automated aorta segmentation in low-dose chest CT images.低剂量胸部 CT 图像中的自动主动脉分割。
Int J Comput Assist Radiol Surg. 2014 Mar;9(2):211-9. doi: 10.1007/s11548-013-0924-5. Epub 2013 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验