Suppr超能文献

低剂量胸部 CT 图像中的自动主动脉分割。

Automated aorta segmentation in low-dose chest CT images.

机构信息

School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA,

出版信息

Int J Comput Assist Radiol Surg. 2014 Mar;9(2):211-9. doi: 10.1007/s11548-013-0924-5. Epub 2013 Jul 23.

Abstract

PURPOSE

Abnormalities of aortic surface and aortic diameter can be related to cardiovascular disease and aortic aneurysm. Computer-based aortic segmentation and measurement may aid physicians in related disease diagnosis. This paper presents a fully automated algorithm for aorta segmentation in low-dose non-contrast CT images.

METHODS

The original non-contrast CT scan images as well as their pre-computed anatomy label maps are used to locate the aorta and identify its surface. First a seed point is located inside the aortic lumen. Then, a cylindrical model is progressively fitted to the 3D image space to track the aorta centerline. Finally, the aortic surface is located based on image intensity information. This algorithm has been trained and tested on 359 low-dose non-contrast CT images from VIA-ELCAP and LIDC public image databases. Twenty images were used for training to obtain the optimal set of parameters, while the remaining images were used for testing. The segmentation result has been evaluated both qualitatively and quantitatively. Sixty representative testing images were used to establish a partial ground truth by manual marking on several axial image slices.

RESULTS

Compared to ground truth marking, the segmentation result had a mean Dice Similarity Coefficient of 0.933 (maximum 0.963 and minimum 0.907). The average boundary distance between manual segmentation and automatic segmentation was 1.39 mm with a maximum of 1.79 mm and a minimum of 0.83 mm.

CONCLUSION

Both qualitative and quantitative evaluations have shown that the presented algorithm is able to accurately segment the aorta in low-dose non-contrast CT images.

摘要

目的

主动脉表面和直径的异常可能与心血管疾病和主动脉瘤有关。基于计算机的主动脉分割和测量可以帮助医生进行相关疾病的诊断。本文提出了一种用于低剂量非对比 CT 图像中主动脉分割的全自动算法。

方法

原始非对比 CT 扫描图像及其预先计算的解剖标签地图用于定位主动脉并识别其表面。首先在主动脉管腔内部定位一个种子点。然后,一个圆柱形模型逐渐拟合到 3D 图像空间中,以跟踪主动脉中心线。最后,根据图像强度信息定位主动脉表面。该算法已经在 VIA-ELCAP 和 LIDC 公共图像数据库中的 359 个低剂量非对比 CT 图像上进行了训练和测试。20 个图像用于训练以获得最佳参数集,而其余图像用于测试。分割结果进行了定性和定量评估。60 张有代表性的测试图像用于通过在几个轴向图像切片上手动标记来建立部分真实标记。

结果

与真实标记相比,分割结果的平均骰子相似系数为 0.933(最大为 0.963,最小为 0.907)。手动分割和自动分割之间的平均边界距离为 1.39 毫米,最大为 1.79 毫米,最小为 0.83 毫米。

结论

定性和定量评估均表明,所提出的算法能够准确地分割低剂量非对比 CT 图像中的主动脉。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验