Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100910, PR China.
School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, PR China.
J Am Chem Soc. 2018 Feb 14;140(6):2284-2291. doi: 10.1021/jacs.7b12140. Epub 2018 Feb 5.
The employment of physical light sources in clinical photodynamic therapy (PDT) system endows it with a crucial defect in the treatment of deeper tissue lesions due to the limited penetration depth of light in biological tissues. In this work, we constructed for the first time an electric driven luminous system based on electrochemiluminescence (ECL) for killing pathogenic bacteria, where ECL is used for the excitation of photosensitizer instead of a physical light source to produce reactive oxygen species (ROS). We named this new strategy as ECL-therapeutics. The mechanism for the ECL-therapeutics is dependent on the perfect spectral overlap and energy transfer from the ECL generated by luminol to photosensitizer, cationic oligo(p-phenylenevinylene) (OPV), to sensitize the surrounding oxygen molecule into ROS. Furthermore, taking into account the practical application of our ECL-therapeutics, we used flexible hydrogel to replace the liquid system to develop hydrogel antibacterial device. Because the chemical reaction is a slow process in the hydrogel, the luminescence could last for more than 10 min after only electrifying for five seconds. This unique persistent luminescence characteristic with long afterglow life makes them suitable for persistent antibacterial applications. Thus, stretchable and persistent hydrogel devices are designed by integrating stretchable hydrogel, persistent ECL and antibacterial function into hydrogel matrices. This novel strategy avoids the employment of external light source, making it simple, convenient and controllable, which exploits a new field for ECL beyond sensors and also opens up a new model for PDT.
在临床光动力疗法(PDT)系统中使用物理光源,由于生物组织中光的穿透深度有限,因此在治疗深层组织病变方面存在一个关键缺陷。在这项工作中,我们首次构建了基于电致化学发光(ECL)的电动发光系统,用于杀死致病菌,其中 ECL 用于激发光敏剂而不是物理光源以产生活性氧(ROS)。我们将这种新策略命名为 ECL-治疗。ECL-治疗的机制依赖于完美的光谱重叠和从鲁米诺产生的 ECL 到光敏剂阳离子聚对苯乙炔(OPV)的能量转移,将周围的氧分子敏化为 ROS。此外,考虑到我们的 ECL-治疗的实际应用,我们使用柔性水凝胶代替液体系统来开发水凝胶抗菌装置。由于在水凝胶中化学反应是一个缓慢的过程,因此在仅通电五秒后,发光可持续超过 10 分钟。这种独特的持久发光特性和长余辉寿命使它们适合持续抗菌应用。因此,通过将可拉伸水凝胶、持久 ECL 和抗菌功能集成到水凝胶基质中,设计出了可拉伸且持久的水凝胶装置。这种新策略避免了外部光源的使用,使其简单、方便且易于控制,为 ECL 在传感器之外开辟了新领域,并为 PDT 开辟了新模式。