Owais Muhammad, Arsalan Muhammad, Mahmood Tahir, Kim Yu Hwan, Park Kang Ryoung
Division of Electronics and Electrical Engineering, Dongguk University, Seoul, Republic of Korea.
JMIR Med Inform. 2020 Dec 7;8(12):e21790. doi: 10.2196/21790.
Tuberculosis (TB) is one of the most infectious diseases that can be fatal. Its early diagnosis and treatment can significantly reduce the mortality rate. In the literature, several computer-aided diagnosis (CAD) tools have been proposed for the efficient diagnosis of TB from chest radiograph (CXR) images. However, the majority of previous studies adopted conventional handcrafted feature-based algorithms. In addition, some recent CAD tools utilized the strength of deep learning methods to further enhance diagnostic performance. Nevertheless, all these existing methods can only classify a given CXR image into binary class (either TB positive or TB negative) without providing further descriptive information.
The main objective of this study is to propose a comprehensive CAD framework for the effective diagnosis of TB by providing visual as well as descriptive information from the previous patients' database.
To accomplish our objective, first we propose a fusion-based deep classification network for the CAD decision that exhibits promising performance over the various state-of-the-art methods. Furthermore, a multilevel similarity measure algorithm is devised based on multiscale information fusion to retrieve the best-matched cases from the previous database.
The performance of the framework was evaluated based on 2 well-known CXR data sets made available by the US National Library of Medicine and the National Institutes of Health. Our classification model exhibited the best diagnostic performance (0.929, 0.937, 0.921, 0.928, and 0.965 for F1 score, average precision, average recall, accuracy, and area under the curve, respectively) and outperforms the performance of various state-of-the-art methods.
This paper presents a comprehensive CAD framework to diagnose TB from CXR images by retrieving the relevant cases and their clinical observations from the previous patients' database. These retrieval results assist the radiologist in making an effective diagnostic decision related to the current medical condition of a patient. Moreover, the retrieval results can facilitate the radiologists in subjectively validating the CAD decision.
结核病(TB)是最具传染性的致命疾病之一。其早期诊断和治疗可显著降低死亡率。在文献中,已经提出了几种计算机辅助诊断(CAD)工具,用于从胸部X光(CXR)图像中高效诊断结核病。然而,大多数先前的研究采用传统的基于手工特征的算法。此外,一些最近的CAD工具利用深度学习方法的优势来进一步提高诊断性能。尽管如此,所有这些现有方法只能将给定的CXR图像分类为二元类别(结核病阳性或结核病阴性),而不提供进一步的描述性信息。
本研究的主要目的是通过提供来自先前患者数据库的视觉和描述性信息,提出一个全面的CAD框架,用于有效诊断结核病。
为了实现我们的目标,首先我们提出了一种基于融合的深度分类网络用于CAD决策,该网络在各种先进方法中表现出有前景的性能。此外,基于多尺度信息融合设计了一种多级相似性度量算法,以从先前数据库中检索最佳匹配病例。
基于美国国立医学图书馆和美国国立卫生研究院提供的2个著名的CXR数据集对该框架的性能进行了评估。我们的分类模型表现出最佳的诊断性能(F1分数、平均精度、平均召回率、准确率和曲线下面积分别为0.929、0.937、0.921、0.928和0.965),并且优于各种先进方法的性能。
本文提出了一个全面的CAD框架,通过从先前患者数据库中检索相关病例及其临床观察结果来从CXR图像中诊断结核病。这些检索结果有助于放射科医生就患者当前的病情做出有效的诊断决策。此外,检索结果可以帮助放射科医生主观地验证CAD决策。