Department of Physics, Concordia University, Montreal, QC, Canada.
Department of Physics, Concordia University, Montreal, QC, Canada.
Biochim Biophys Acta Bioenerg. 2018 Apr;1859(4):227-233. doi: 10.1016/j.bbabio.2018.01.002. Epub 2018 Jan 31.
Systematic control over molecular driving forces is essential for understanding the natural electron transfer processes as well as for improving the efficiency of the artificial mimics of energy converting enzymes. Oxygen producing photosynthesis uniquely employs manganese ions as rapid electron donors. Introducing this attribute to anoxygenic photosynthesis may identify evolutionary intermediates and provide insights to the energetics of biological water oxidation. This work presents effective environmental methods that substantially and simultaneously tune the redox potentials of manganese ions and the cofactors of a photosynthetic enzyme from native anoxygenic bacteria without the necessity of genetic modification or synthesis. A spontaneous coordination with bis-tris propane lowered the redox potential of the manganese (II) to manganese (III) transition to an unusually low value (~400 mV) at pH 9.4 and allowed its binding to the bacterial reaction center. Binding to a novel buried binding site elevated the redox potential of the primary electron donor, a dimer of bacteriochlorophylls, by up to 92 mV also at pH 9.4 and facilitated the electron transfer that is able to compete with the wasteful charge recombination. These events impaired the function of the natural electron donor and made BTP-coordinated manganese a viable model for an evolutionary alternative.
系统地控制分子驱动力对于理解自然电子转移过程以及提高人工模拟能量转换酶的效率至关重要。产氧光合作用独特地利用锰离子作为快速电子供体。将这一特性引入非产氧光合作用可能会发现进化中间体,并深入了解生物水氧化的能量学。本工作提出了有效的环境方法,可同时大幅调节天然厌氧细菌中光合作用酶的锰离子和辅助因子的氧化还原电位,而无需基因修饰或合成。在 pH 值为 9.4 时,与双三(丙烷)的自发配位将锰(II)到锰(III)的氧化还原电位降低到异常低的值(约 400 mV),并允许其与细菌反应中心结合。与新型埋藏结合位点结合,将原初电子供体(细菌叶绿素二聚体)的氧化还原电位提高了多达 92 mV,也在 pH 值为 9.4 时,并促进了能够与浪费的电荷复合竞争的电子转移。这些事件损害了天然电子供体的功能,使 BTP 配位锰成为一种可行的进化替代方案。