Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115.
Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts, 02115.
J Biomed Mater Res A. 2018 May;106(5):1400-1412. doi: 10.1002/jbm.a.36347. Epub 2018 Feb 6.
Antimicrobial resistance is a global concern that affects more than two million people each year. Therefore, new approaches to kill bacteria are needed. One of the most promising methodologies may come from metallic nanoparticles, since bacteria may not develop a resistance to these nanostructures as they do for antibiotics. While metallic nanoparticle synthesis methods have been well studied, they are often accompanied by significant drawbacks such as cost, extreme processing conditions, and toxic waste production since they use harsh chemicals such as corrosive agents (hydrazine) or strong acids (hydrochloride acid). In this work, we explored the environmentally safe synthesis of selenium nanoparticles, which have shown promise in killing bacteria. Using Escherichia coli, Pseudomonas aeruginosa, Methicillin-resistance Staphylococcus aureus, and S. aureus, 90-150 nm average diameter selenium nanoparticles were synthesized using an environmentally safe approach. Nanoparticles were characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy to determine the chemical composition, and inductively coupled plasma mass spectrometry to validate chemistry. Nanoparticles were also characterized and tested for their ability to inhibit bacterial growth. A decay in bacterial growth after 24 h was achieved against both S. aureus and E. coli at biogenic selenium nanoparticle concentrations from 25 to 250 µg/mL and showed no significant cytotoxicity effect against human dermal fibroblasts for 24 h. Bacteria were able to synthesize selenium nanoparticles through the use of different functional structures within the organisms, mainly enzymes such as selenite reductases. Therefore, biogenic selenium nanoparticles made by bacteria represent a viable approach to reduce bacteria growth without antibiotics overcoming the drawbacks of synthetic methods that employ toxic chemicals. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1400-1412, 2018.
抗菌耐药性是一个全球性的问题,每年影响超过 200 万人。因此,需要新的方法来杀死细菌。最有前途的方法之一可能来自金属纳米粒子,因为细菌不会像对抗生素那样对这些纳米结构产生耐药性。虽然金属纳米粒子的合成方法已经得到了很好的研究,但它们通常伴随着显著的缺点,例如成本、极端的加工条件和有毒废物的产生,因为它们使用腐蚀性试剂(肼)或强酸(盐酸)等苛刻的化学物质。在这项工作中,我们探索了使用环境安全的方法合成硒纳米粒子,硒纳米粒子在杀死细菌方面表现出了很大的潜力。我们使用大肠杆菌、铜绿假单胞菌、耐甲氧西林金黄色葡萄球菌和金黄色葡萄球菌,使用环境安全的方法合成了平均直径为 90-150nm 的硒纳米粒子。使用透射电子显微镜、能量色散 X 射线能谱法确定化学组成和电感耦合等离子体质谱法来验证化学性质对纳米粒子进行了表征。还对纳米粒子进行了表征,并测试了它们抑制细菌生长的能力。在 25 至 250μg/ml 的生物源硒纳米粒子浓度下,对金黄色葡萄球菌和大肠杆菌的细菌生长均有抑制作用,在 24 小时内对人真皮成纤维细胞没有显著的细胞毒性作用。细菌能够通过在生物体中使用不同的功能结构来合成硒纳米粒子,主要是如亚硒酸盐还原酶等酶。因此,由细菌制成的生物源硒纳米粒子代表了一种可行的方法,可以在不使用抗生素克服使用有毒化学物质的合成方法的缺点的情况下减少细菌的生长。© 2018 Wiley Periodicals, Inc. J 生物材料研究杂志 A 部分:106A:1400-1412,2018。