Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia.
Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia.
ACS Appl Mater Interfaces. 2020 Dec 16;12(50):55696-55709. doi: 10.1021/acsami.0c17550. Epub 2020 Nov 29.
Antibiotic-resistant bacteria are a severe threat to human health. The World Health Organization's Global Antimicrobial Surveillance System has revealed widespread occurrence of antibiotic resistance among half a million patients across 22 countries, with , , and being the most common resistant species. Antimicrobial nanoparticles are emerging as a promising alternative to antibiotics in the fight against antimicrobial resistance. In this work, selenium nanoparticles coated with the antimicrobial polypeptide, ε-poly-l-lysine, (Se NP-ε-PL) were synthesized and their antibacterial activity and cytotoxicity were investigated. Se NP-ε-PL exhibited significantly greater antibacterial activity against all eight bacterial species tested, including Gram-positive, Gram-negative, and drug-resistant strains, than their individual components, Se NP and ε-PL. The nanoparticles showed no toxicity toward human dermal fibroblasts at the minimum inhibitory concentrations, demonstrating a therapeutic window. Furthermore, unlike the conventional antibiotic kanamycin, Se NP-ε-PL did not readily induce resistance in or . Specifically, began to develop resistance to kanamycin from ∼44 generations, whereas it took ∼132 generations for resistance to develop to Se NP-ε-PL. Startlingly, was not able to develop resistance to the nanoparticles over ∼300 generations. These results indicate that the multifunctional approach of combining Se NP with ε-PL to form Se NP-ε-PL is a highly efficacious new strategy with wide-spectrum antibacterial activity, low cytotoxicity, and significant delays in development of resistance.
耐药菌对人类健康构成严重威胁。世界卫生组织的全球抗菌药物监测系统显示,在 22 个国家的 50 万名患者中,抗生素耐药性普遍存在,其中 、 、 和 是最常见的耐药菌。抗菌纳米颗粒作为一种有前途的抗生素替代品,在对抗抗菌药物耐药性方面具有广阔的应用前景。在这项工作中,合成了一种用抗菌多肽 ε-聚赖氨酸(ε-PL)修饰的硒纳米颗粒(Se NP-ε-PL),并研究了其抗菌活性和细胞毒性。与单个成分 Se NP 和 ε-PL 相比,Se NP-ε-PL 对所有 8 种测试细菌(包括革兰氏阳性菌、革兰氏阴性菌和耐药菌株)均表现出更强的抗菌活性。纳米颗粒在最低抑菌浓度下对人皮肤成纤维细胞没有毒性,表现出治疗窗口。此外,与传统抗生素卡那霉素不同,Se NP-ε-PL 不易在 或 中诱导耐药性。具体而言, 对卡那霉素的耐药性从约 44 代开始出现,而对 Se NP-ε-PL 的耐药性则需要约 132 代才能发展。令人惊讶的是, 无法在约 300 代的时间内对纳米颗粒产生耐药性。这些结果表明,将 Se NP 与 ε-PL 结合形成 Se NP-ε-PL 的多功能方法是一种高效的新策略,具有广谱抗菌活性、低细胞毒性和显著延迟耐药性发展的特点。
ACS Appl Mater Interfaces. 2020-12-16
Biomed Mater. 2020-12-12
Adv Drug Deliv Rev. 2013-7-24
Int J Nanomedicine. 2020-6-17
Int J Biol Macromol. 2023-11-1
Cancer Rep (Hoboken). 2025-6
Nanoscale Horiz. 2024-3-25
Materials (Basel). 2023-7-30
ACS Appl Mater Interfaces. 2023-6-28
Front Microbiol. 2022-7-29
Can J Infect Dis Med Microbiol. 2022-3-23