Suppr超能文献

利用废弃分离物合成具有抗耐药病原体抗菌活性的银、硒和氧化锌纳米粒子。

Biosynthesis of Ag, Se, and ZnO nanoparticles with antimicrobial activities against resistant pathogens using waste isolate .

机构信息

Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.

Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.

出版信息

IET Nanobiotechnol. 2018 Sep;12(6):741-747. doi: 10.1049/iet-nbt.2017.0213.

Abstract

Nanoparticles (NPs) are gaining special interest due to their recent applications as antimicrobial agents to defeat the massive threat of resistant pathogens. This study focused on the utilisation of isolate S12 purified from waste discharge soil in the biological synthesis of silver (Ag), selenium (Se), and zinc oxide (ZnO) NPs. The isolate S12 was related to according to 16S rRNA sequence analysis, morphological characteristics, and biochemical reactions. The cell-free supernatant has been used for the synthesis of Ag, Se, and ZnO NPs. The synthesised NPs were characterised using ultraviolet-visible spectroscopy, dynamic light scattering (DLS), transmission electron microscopy, and Fourier transform infrared spectroscopy. The biogenic NPs were evaluated for antimicrobial effects against different Gram-positive and Gram-negative resistant isolates using the broth microdilution method. They showed antibacterial effect against standard and resistant isolates; , ATCC 29213, S1.1, methicillin resistant (MRSA 303, 402 and 807), ATCC 12435, E7, ATCC 51503, K5, K112, PAO1, and P8. This study showed the green synthesis of various NPs using isolate S12 which demonstrated diverse activities against multi-drug resistant isolates.

摘要

纳米粒子(NPs)因其最近作为抗菌剂的应用而受到特别关注,以应对耐药病原体的巨大威胁。本研究专注于利用从废水排放土壤中分离出的 S12 纯化物来生物合成银(Ag)、硒(Se)和氧化锌(ZnO) NPs。根据 16S rRNA 序列分析、形态特征和生化反应,S12 分离物与 有关。无细胞上清液已用于合成 Ag、Se 和 ZnO NPs。使用紫外-可见光谱、动态光散射(DLS)、透射电子显微镜和傅里叶变换红外光谱对合成的 NPs 进行了表征。采用肉汤微量稀释法评估生物合成的 NPs 对不同革兰氏阳性和革兰氏阴性耐药分离株的抗菌作用。它们对标准和耐药分离株表现出抗菌作用,包括 、ATCC 29213、S1.1、耐甲氧西林 (MRSA 303、402 和 807)、ATCC 12435、E7、ATCC 51503、K5、K112、PAO1 和 P8。本研究显示了使用 S12 分离物的各种 NPs 的绿色合成,该分离物对多种耐药分离株表现出多种活性。

相似文献

4
Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from and Its Nanoantibiotic Potential.
Int J Nanomedicine. 2020 Nov 2;15:8519-8536. doi: 10.2147/IJN.S271743. eCollection 2020.
5
9
Soil Fungi as Biomediator in Silver Nanoparticles Formation and Antimicrobial Efficacy.
Int J Nanomedicine. 2022 Jun 29;17:2843-2863. doi: 10.2147/IJN.S356724. eCollection 2022.
10
Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine.
J Basic Microbiol. 2017 Aug;57(8):659-668. doi: 10.1002/jobm.201700087. Epub 2017 May 22.

引用本文的文献

3
Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review.
Int J Nanomedicine. 2024 Dec 3;19:12889-12937. doi: 10.2147/IJN.S487188. eCollection 2024.
4
Advances in antibacterial activity of zinc oxide nanoparticles against (Review).
Biomed Rep. 2024 Aug 30;21(5):161. doi: 10.3892/br.2024.1849. eCollection 2024 Nov.
6
Biological Selenium Nanoparticles in Quail Nutrition: Biosynthesis and its Impact on Performance, Carcass, Blood Chemistry, and Cecal Microbiota.
Biol Trace Elem Res. 2024 Sep;202(9):4191-4202. doi: 10.1007/s12011-023-03996-3. Epub 2023 Dec 18.
7
Antibiofilm activity of biosynthesized silver and copper nanoparticles using Streptomyces S29.
AMB Express. 2023 Dec 6;13(1):139. doi: 10.1186/s13568-023-01647-3.
8
Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants.
Front Microbiol. 2023 Sep 5;14:1227951. doi: 10.3389/fmicb.2023.1227951. eCollection 2023.
9
A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry.
Front Microbiol. 2023 Jul 13;14:1229838. doi: 10.3389/fmicb.2023.1229838. eCollection 2023.
10
Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity.
Pharmaceutics. 2023 Jun 3;15(6):1650. doi: 10.3390/pharmaceutics15061650.

本文引用的文献

1
Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area.
3 Biotech. 2014 Apr;4(2):121-126. doi: 10.1007/s13205-013-0130-8. Epub 2013 Apr 17.
2
The antimicrobial activity of nanoparticles: present situation and prospects for the future.
Int J Nanomedicine. 2017 Feb 14;12:1227-1249. doi: 10.2147/IJN.S121956. eCollection 2017.
3
Production of selenium nanoparticles in Pseudomonas putida KT2440.
Sci Rep. 2016 Nov 15;6:37155. doi: 10.1038/srep37155.
5
Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water.
Int J Nanomedicine. 2016 Aug 8;11:3731-6. doi: 10.2147/IJN.S106289. eCollection 2016.
6
Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes.
Molecules. 2016 Jun 27;21(7):836. doi: 10.3390/molecules21070836.
8
ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.
PLoS One. 2015 Jun 3;10(6):e0128457. doi: 10.1371/journal.pone.0128457. eCollection 2015.
9
Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review.
Crit Rev Microbiol. 2016;42(2):209-21. doi: 10.3109/1040841X.2014.917069. Epub 2014 Nov 28.
10
Production and Characterization of Protein Encapsulated Silver Nanoparticles by Marine Isolate Streptomyces parvulus SSNP11.
Indian J Microbiol. 2014 Sep;54(3):329-36. doi: 10.1007/s12088-014-0452-1. Epub 2014 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验