From the Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University, St. Louis, Missouri 63130.
the Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63108.
J Biol Chem. 2018 Mar 9;293(10):3734-3746. doi: 10.1074/jbc.RA117.000357. Epub 2018 Jan 22.
Huntingtin N-terminal fragments (Htt-NTFs) with expanded polyglutamine tracts form a range of neurotoxic aggregates that are associated with Huntington's disease. Here, we show that aggregation of Htt-NTFs, irrespective of polyglutamine length, yields at least three phases (designated M, S, and F) that are delineated by sharp concentration thresholds and distinct aggregate sizes and morphologies. We found that monomers and oligomers make up the soluble M phase, ∼25-nm spheres dominate in the soluble S phase, and long, linear fibrils make up the insoluble F phase. Previous studies showed that profilin, an abundant cellular protein, reduces Htt-NTF aggregation and toxicity in cells. We confirm that profilin achieves its cellular effects through direct binding to the C-terminal proline-rich region of Htt-NTFs. We show that profilin preferentially binds to Htt-NTF M-phase species and destabilizes aggregation and phase separation by shifting the concentration boundaries for phase separation to higher values through a process known as polyphasic linkage. Our experiments, aided by coarse-grained computer simulations and theoretical analysis, suggest that preferential binding of profilin to the M-phase species of Htt-NTFs is enhanced through a combination of specific interactions between profilin and polyproline segments and auxiliary interactions between profilin and polyglutamine tracts. Polyphasic linkage may be a general strategy that cells utilize to regulate phase behavior of aggregation-prone proteins. Accordingly, detailed knowledge of phase behavior and an understanding of how ligands modulate phase boundaries may pave the way for developing new therapeutics against a variety of aggregation-prone proteins.
亨廷顿病与具有扩展多聚谷氨酰胺序列的亨廷顿 N 端片段(Htt-NTFs)形成的一系列神经毒性聚集体有关。在这里,我们表明 Htt-NTFs 的聚集,无论多聚谷氨酰胺的长度如何,都会产生至少三个阶段(分别命名为 M、S 和 F),这些阶段由明显的浓度阈值和不同的聚集大小和形态来划分。我们发现单体和低聚物组成了可溶的 M 相,约 25nm 的球体在可溶性 S 相中占主导地位,而长的线性纤维构成了不可溶的 F 相。先前的研究表明,原肌球蛋白是一种丰富的细胞蛋白,可以减少细胞中 Htt-NTF 的聚集和毒性。我们证实原肌球蛋白通过直接与 Htt-NTF 的 C 端富含脯氨酸的区域结合来实现其细胞效应。我们表明,原肌球蛋白优先结合 Htt-NTF 的 M 相物种,并通过将相分离的浓度边界转移到更高的值来稳定聚集体和相分离,这一过程称为多相连接。我们的实验,借助粗粒化计算机模拟和理论分析,表明原肌球蛋白与 Htt-NTF 的 M 相物种的优先结合是通过原肌球蛋白与多聚脯氨酸片段之间的特定相互作用以及原肌球蛋白与多聚谷氨酰胺片段之间的辅助相互作用的组合来增强的。多相连接可能是细胞用来调节易聚集蛋白相行为的一般策略。因此,详细了解相行为以及了解配体如何调节相边界可能为开发针对各种易聚集蛋白的新疗法铺平道路。