Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130.
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20075-80. doi: 10.1073/pnas.1320626110. Epub 2013 Nov 26.
Huntington disease is caused by mutational expansion of the CAG trinucleotide within exon 1 of the huntingtin (Htt) gene. Exon 1 spanning N-terminal fragments (NTFs) of the Htt protein result from aberrant splicing of transcripts of mutant Htt. NTFs typically encompass a polyglutamine tract flanked by an N-terminal 17-residue amphipathic stretch (N17) and a C-terminal 38-residue proline-rich stretch (C38). We present results from in vitro biophysical studies that quantify the driving forces for and mechanisms of polyglutamine aggregation as modulated by N17 and C38. Although N17 is highly soluble by itself, it lowers the saturation concentration of soluble NTFs and increases the driving force, vis-à-vis homopolymeric polyglutamine, for forming insoluble aggregates. Kinetically, N17 accelerates fibril formation and destabilizes nonfibrillar intermediates. C38 is also highly soluble by itself, and it lends its high intrinsic solubility to lower the driving force for forming insoluble aggregates by increasing the saturation concentration of soluble NTFs. In NTFs with both modules, N17 and C38 act synergistically to destabilize nonfibrillar intermediates (N17 effect) and lower the driving force for forming insoluble aggregates (C38 effect). Morphological studies show that N17 and C38 promote the formation of ordered fibrils by NTFs. Homopolymeric polyglutamine forms a mixture of amorphous aggregates and fibrils, and its aggregation mechanisms involve early formation of heterogeneous distributions of nonfibrillar species. We propose that N17 and C38 act as gatekeepers that control the intrinsic heterogeneities of polyglutamine aggregation. This provides a biophysical explanation for the modulation of in vivo NTF toxicities by N17 and C38.
亨廷顿病是由亨廷顿(Htt)基因外显子 1 内 CAG 三核苷酸重复扩增突变引起的。外显子 1 跨越 Htt 蛋白的 N 端片段(NTFs),是由突变型 Htt 转录本的异常剪接产生的。NTFs 通常包含一个多聚谷氨酰胺链,两侧是一个 N 端 17 残基的两亲性伸展(N17)和一个 C 端 38 残基富含脯氨酸的伸展(C38)。我们提供了体外生物物理研究的结果,这些结果量化了 N17 和 C38 调节下多聚谷氨酰胺聚集的驱动力和机制。尽管 N17 本身具有很高的可溶性,但它降低了可溶性 NTFs 的饱和浓度,并增加了与同聚多聚谷氨酰胺相比形成不溶性聚集体的驱动力。从动力学上看,N17 加速了纤维的形成,并使非纤维状中间产物不稳定。C38 本身也具有很高的可溶性,它通过增加可溶性 NTFs 的饱和浓度来降低形成不溶性聚集体的驱动力,从而赋予其高的固有可溶性。在具有两个模块的 NTFs 中,N17 和 C38 协同作用,通过破坏非纤维状中间产物来使不稳定(N17 效应)并降低形成不溶性聚集体的驱动力(C38 效应)。形态学研究表明,N17 和 C38 通过 NTFs 促进有序纤维的形成。同聚多聚谷氨酰胺形成无定形聚集体和纤维的混合物,其聚集机制涉及非纤维状物种的异质分布的早期形成。我们提出,N17 和 C38 作为门控分子,控制多聚谷氨酰胺聚集的固有异质性。这为 N17 和 C38 对体内 NTF 毒性的调节提供了一个生物物理解释。