Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz Center for Synthetic Microbiology & Faculty of Chemistry, Philipps-University-Marburg, 35043 Marburg, Germany.
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):E1259-E1268. doi: 10.1073/pnas.1716661115. Epub 2018 Jan 22.
Motility is a central feature of many microorganisms and provides an efficient strategy to respond to environmental changes. Bacteria and archaea have developed fundamentally different rotary motors enabling their motility, termed flagellum and archaellum, respectively. Bacterial motility along chemical gradients, called chemotaxis, critically relies on the response regulator CheY, which, when phosphorylated, inverses the rotational direction of the flagellum via a switch complex at the base of the motor. The structural difference between archaellum and flagellum and the presence of functional CheY in archaea raises the question of how the CheY protein changed to allow communication with the archaeal motility machinery. Here we show that archaeal CheY shares the overall structure and mechanism of magnesium-dependent phosphorylation with its bacterial counterpart. However, bacterial and archaeal CheY differ in the electrostatic potential of the helix α4. The helix α4 is important in bacteria for interaction with the flagellar switch complex, a structure that is absent in archaea. We demonstrated that phosphorylation-dependent activation, and conserved residues in the archaeal CheY helix α4, are important for interaction with the archaeal-specific adaptor protein CheF. This forms a bridge between the chemotaxis system and the archaeal motility machinery. Conclusively, archaeal CheY proteins conserved the central mechanistic features between bacteria and archaea, but differ in the helix α4 to allow binding to an archaellum-specific interaction partner.
运动性是许多微生物的核心特征,为它们响应环境变化提供了一种高效的策略。细菌和古菌分别发展出了截然不同的旋转马达,从而实现了它们的运动性,这些马达分别被称为鞭毛和菌毛。细菌沿着化学梯度的运动,称为趋化性,严重依赖于响应调节剂 CheY,当 CheY 被磷酸化时,通过马达底部的开关复合物来反转鞭毛的旋转方向。菌毛和鞭毛的结构差异以及古菌中存在功能性 CheY 提出了一个问题,即 CheY 蛋白如何发生变化,从而与古菌的运动机制进行通讯。在这里,我们表明古菌 CheY 与细菌 CheY 具有相同的依赖镁的磷酸化的总体结构和机制。然而,细菌和古菌的 CheY 在螺旋α4 的静电荷潜力上存在差异。在细菌中,螺旋α4 对于与鞭毛开关复合物的相互作用很重要,而这个结构在古菌中是不存在的。我们证明了磷酸化依赖性激活以及古菌 CheY 螺旋α4 中的保守残基对于与古菌特异性衔接蛋白 CheF 的相互作用很重要。这在趋化系统和古菌运动机制之间形成了一座桥梁。总之,古菌 CheY 蛋白保留了细菌和古菌之间的核心机械特征,但在螺旋α4 上存在差异,从而能够与菌毛特异性的相互作用伙伴结合。