Suppr超能文献

肠道炎症中的缺氧-腺苷关联。

The Hypoxia-Adenosine Link during Intestinal Inflammation.

机构信息

Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030

Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030.

出版信息

J Immunol. 2018 Feb 1;200(3):897-907. doi: 10.4049/jimmunol.1701414.

Abstract

Intestinal inflammation is a key element in inflammatory bowel disease and is related to a combination of factors, including genetics, mucosal barrier dysfunction, bacteria translocation, deleterious host-microbe interactions, and dysregulated immune responses. Over the past decade, it has been appreciated that these inflammatory lesions are associated with profound tissue hypoxia. Interestingly, an endogenous adaptive response under the control of hypoxia signaling is enhancement in adenosine signaling, which impacts these different endpoints, including promoting barrier function and encouraging anti-inflammatory activity. In this review, we discuss the hypoxia-adenosine link in inflammatory bowel disease, intestinal ischemia/reperfusion injury, and colon cancer. In addition, we provide a summary of clinical implications of hypoxia and adenosine signaling in intestinal inflammation and disease.

摘要

肠道炎症是炎症性肠病的一个关键因素,与多种因素有关,包括遗传、黏膜屏障功能障碍、细菌易位、有害的宿主-微生物相互作用和免疫反应失调。在过去的十年中,人们已经认识到这些炎症病变与严重的组织缺氧有关。有趣的是,缺氧信号控制下的一种内源性适应性反应是腺苷信号的增强,这会影响到包括促进屏障功能和鼓励抗炎活性在内的这些不同的终点。在这篇综述中,我们讨论了炎症性肠病、肠道缺血/再灌注损伤和结肠癌中的缺氧-腺苷联系。此外,我们还总结了缺氧和腺苷信号在肠道炎症和疾病中的临床意义。

相似文献

1
The Hypoxia-Adenosine Link during Intestinal Inflammation.
J Immunol. 2018 Feb 1;200(3):897-907. doi: 10.4049/jimmunol.1701414.
3
A Novel Role of SLC26A3 in the Maintenance of Intestinal Epithelial Barrier Integrity.
Gastroenterology. 2021 Mar;160(4):1240-1255.e3. doi: 10.1053/j.gastro.2020.11.008. Epub 2020 Nov 13.
4
Colonic epithelial cell diversity in health and inflammatory bowel disease.
Nature. 2019 Mar;567(7746):49-55. doi: 10.1038/s41586-019-0992-y. Epub 2019 Feb 27.
5
Tissue metabolism and the inflammatory bowel diseases.
J Mol Med (Berl). 2017 Sep;95(9):905-913. doi: 10.1007/s00109-017-1544-2. Epub 2017 May 20.
6
Enteric glial cells and their role in the intestinal epithelial barrier.
World J Gastroenterol. 2014 Aug 28;20(32):11273-80. doi: 10.3748/wjg.v20.i32.11273.
7
High-Throughput Screen Identifies Host and Microbiota Regulators of Intestinal Barrier Function.
Gastroenterology. 2020 Nov;159(5):1807-1823. doi: 10.1053/j.gastro.2020.07.003. Epub 2020 Jul 9.
8
Intestinal Barrier Dysfunction in Inflammatory Bowel Disease: Underpinning Pathogenesis and Therapeutics.
Dig Dis Sci. 2023 Dec;68(12):4306-4320. doi: 10.1007/s10620-023-08122-w. Epub 2023 Sep 29.
10
Layered defense: how mucus and tight junctions seal the intestinal barrier.
J Mol Med (Berl). 2017 Sep;95(9):927-934. doi: 10.1007/s00109-017-1557-x. Epub 2017 Jul 13.

引用本文的文献

1
HIF-2α-dependent induction of miR-29a restrains T1 activity during T cell dependent colitis.
Nat Commun. 2024 Sep 14;15(1):8042. doi: 10.1038/s41467-024-52113-y.
2
Purinergic regulation of pulmonary vascular tone.
Purinergic Signal. 2024 Dec;20(6):595-606. doi: 10.1007/s11302-024-10010-5. Epub 2024 May 7.
3
Adenosine in Intestinal Epithelial Barrier Function.
Cells. 2024 Feb 23;13(5):381. doi: 10.3390/cells13050381.
4
Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome.
Front Immunol. 2024 Jan 19;15:1328565. doi: 10.3389/fimmu.2024.1328565. eCollection 2024.
6
Targeting hypoxia-inducible factors: therapeutic opportunities and challenges.
Nat Rev Drug Discov. 2024 Mar;23(3):175-200. doi: 10.1038/s41573-023-00848-6. Epub 2023 Dec 20.
7
Ecto-5'-nucleotidase (CD73): an emerging role as prognostic factor in allergic sensitization.
Inflamm Res. 2024 Jan;73(1):111-115. doi: 10.1007/s00011-023-01820-1. Epub 2023 Dec 12.
8
Mechanism, prevention and treatment of cognitive impairment caused by high altitude exposure.
Front Physiol. 2023 Sep 4;14:1191058. doi: 10.3389/fphys.2023.1191058. eCollection 2023.
9
AR as a Prognostic Marker and a Potential Immunotherapy Target in Human Glioma.
Int J Mol Sci. 2023 Apr 3;24(7):6688. doi: 10.3390/ijms24076688.
10
Research Progress on the Mechanism of Intestinal Barrier Damage and Drug Therapy in a High Altitude Environment.
Curr Drug Deliv. 2024;21(6):807-816. doi: 10.2174/1567201820666230309090241.

本文引用的文献

2
The hypoxia-adenosine link during inflammation.
J Appl Physiol (1985). 2017 Nov 1;123(5):1303-1320. doi: 10.1152/japplphysiol.00101.2017. Epub 2017 Aug 10.
3
HIF1A up-regulates the ADORA2B receptor on alternatively activated macrophages and contributes to pulmonary fibrosis.
FASEB J. 2017 Nov;31(11):4745-4758. doi: 10.1096/fj.201700219R. Epub 2017 Jul 12.
4
Purinergic signaling during intestinal inflammation.
J Mol Med (Berl). 2017 Sep;95(9):915-925. doi: 10.1007/s00109-017-1545-1. Epub 2017 May 26.
5
The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets.
Immunol Rev. 2017 Mar;276(1):121-144. doi: 10.1111/imr.12528.
6
CD73s protection of epithelial integrity: Thinking beyond the barrier.
Tissue Barriers. 2016 Aug 19;4(4):e1224963. doi: 10.1080/21688370.2016.1224963. eCollection 2016.
7
Targeting Hypoxia-Inducible Factors for the Treatment of Anemia in Chronic Kidney Disease Patients.
Am J Nephrol. 2017;45(3):187-199. doi: 10.1159/000455166. Epub 2017 Jan 25.
8
Co-inhibition of CD73 and A2AR Adenosine Signaling Improves Anti-tumor Immune Responses.
Cancer Cell. 2016 Sep 12;30(3):391-403. doi: 10.1016/j.ccell.2016.06.025.
9
Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer.
Pharmacol Ther. 2016 Aug;164:152-69. doi: 10.1016/j.pharmthera.2016.04.009. Epub 2016 Apr 29.
10
A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment.
Front Immunol. 2016 Mar 29;7:109. doi: 10.3389/fimmu.2016.00109. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验