Suppr超能文献

牙龈卟啉单胞菌中核苷二磷酸激酶同系物的一种新激酶功能,通过靶向热休克蛋白27在颠覆宿主细胞凋亡中起关键作用。

A novel kinase function of a nucleoside-diphosphate-kinase homologue in Porphyromonas gingivalis is critical in subversion of host cell apoptosis by targeting heat-shock protein 27.

作者信息

Lee Jungnam, Roberts JoAnn S, Atanasova Kalina R, Chowdhury Nityananda, Yilmaz Özlem

机构信息

Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Florida, USA.

Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA.

出版信息

Cell Microbiol. 2018 May;20(5):e12825. doi: 10.1111/cmi.12825. Epub 2018 Feb 7.

Abstract

We have previously shown that a homologue of a conserved nucleoside-diphosphate-kinase (Ndk) family of multifunctional enzymes and secreted molecule in Porphyromonas gingivalis can modulate select host molecular pathways including downregulation of reactive-oxygen-species generation to promote bacterial survival in human gingival epithelial cells (GECs). In this study, we describe a novel kinase function for bacterial effector, P. gingivalis-Ndk, in abrogating epithelial cell death by phosphorylating heat-shock protein 27 (HSP27) in GECs. Infection by P. gingivalis was recently suggested to increase phosphorylation of HSP27 in cancer-epithelial cells; however, the mechanism and biological significance of antiapoptotic phospho-HSP27 during infection has never been characterised. Interestingly, using glutathione S-transferase-rNdk pull-down analysed by mass spectrometry, we identified HSP27 in GECs as a strong binder of P. gingivalis-Ndk and further verified using confocal microscopy and ELISA. Therefore, we hypothesised P. gingivalis-Ndk can phosphorylate HSP27 for inhibition of apoptosis in GECs. We further employed P. gingivalis-Ndk protein constructs and an isogenic P. gingivalis-ndk-deficient-mutant strain for functional examination. P. gingivalis-infected GECs displayed significantly increased phospho-HSP27 compared with ndk-deficient-strain during 24 hr infection. Phospho-HSP27 was significantly increased by transfection of GFP-tagged-Ndk into uninfected-GECs, and in vitro phosphorylation assays revealed direct phosphorylation of HSP27 at serines 78 and 82 by P. gingivalis-Ndk. Depletion of HSP27 via siRNA significantly reversed resistance against staurosporine-mediated-apoptosis during infection. Transfection of recombinant P. gingivalis-Ndk protein into GECs substantially decreased staurosporine-induced-apoptosis. Finally, ndk-deficient-mutant strain was unable to inhibit staurosporine-induced Cytochrome C release/Caspase-9 activation. Thus, we show for the first time the phosphorylation of HSP27 by a bacterial effector-P. gingivalis-Ndk-and a novel function of Ndks that is directly involved in inhibition of host cell apoptosis and the subsequent bacterial survival.

摘要

我们之前已经表明,牙龈卟啉单胞菌中一种多功能酶和分泌分子的保守核苷二磷酸激酶(Ndk)家族的同源物可以调节特定的宿主分子途径,包括下调活性氧的产生,以促进细菌在人牙龈上皮细胞(GECs)中的存活。在本研究中,我们描述了细菌效应蛋白牙龈卟啉单胞菌-Ndk的一种新的激酶功能,即通过磷酸化GECs中的热休克蛋白27(HSP27)来消除上皮细胞死亡。最近有人提出,牙龈卟啉单胞菌感染会增加癌上皮细胞中HSP27的磷酸化;然而,感染期间抗凋亡磷酸化HSP27的机制和生物学意义从未被阐明。有趣的是,通过质谱分析的谷胱甘肽S-转移酶-rNdk下拉实验,我们在GECs中鉴定出HSP27是牙龈卟啉单胞菌-Ndk的强结合蛋白,并通过共聚焦显微镜和酶联免疫吸附测定进一步验证。因此,我们推测牙龈卟啉单胞菌-Ndk可以磷酸化HSP27以抑制GECs中的细胞凋亡。我们进一步使用牙龈卟啉单胞菌-Ndk蛋白构建体和同基因的牙龈卟啉单胞菌ndk缺陷突变株进行功能检测。在24小时感染期间,与ndk缺陷菌株相比,牙龈卟啉单胞菌感染的GECs中磷酸化HSP27显著增加。通过将绿色荧光蛋白标记的-Ndk转染到未感染的GECs中,磷酸化HSP27显著增加,并且体外磷酸化实验表明牙龈卟啉单胞菌-Ndk可直接在丝氨酸78和82处磷酸化HSP27。通过小干扰RNA耗尽HSP27可显著逆转感染期间对星形孢菌素介导的细胞凋亡的抗性。将重组牙龈卟啉单胞菌-Ndk蛋白转染到GECs中可显著降低星形孢菌素诱导的细胞凋亡。最后,ndk缺陷突变株无法抑制星形孢菌素诱导的细胞色素C释放/半胱天冬酶-9激活。因此,我们首次展示了细菌效应蛋白牙龈卟啉单胞菌-Ndk对HSP27的磷酸化作用,以及Ndk直接参与抑制宿主细胞凋亡和随后细菌存活的新功能。

相似文献

引用本文的文献

5
Periodontal pathogens and cancer development.牙周病病原体与癌症发展。
Periodontol 2000. 2024 Oct;96(1):112-149. doi: 10.1111/prd.12590. Epub 2024 Jul 4.

本文引用的文献

9
Prelude to oral microbes and chronic diseases: past, present and future.口腔微生物与慢性疾病的前奏:过去、现在与未来
Microbes Infect. 2015 Jul;17(7):473-83. doi: 10.1016/j.micinf.2015.03.007. Epub 2015 Mar 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验