Suppr超能文献

急诊剖宫产的预测模型

Predictive modeling of emergency cesarean delivery.

作者信息

Campillo-Artero Carlos, Serra-Burriel Miquel, Calvo-Pérez Andrés

机构信息

Centre for Research in Health and Economics, Universitat Pompeu Fabra, Barcelona, Spain.

Balearic Health Service, Palma de Mallorca, Spain.

出版信息

PLoS One. 2018 Jan 23;13(1):e0191248. doi: 10.1371/journal.pone.0191248. eCollection 2018.

Abstract

OBJECTIVE

To increase discriminatory accuracy (DA) for emergency cesarean sections (ECSs).

STUDY DESIGN

We prospectively collected data on and studied all 6,157 births occurring in 2014 at four public hospitals located in three different autonomous communities of Spain. To identify risk factors (RFs) for ECS, we used likelihood ratios and logistic regression, fitted a classification tree (CTREE), and analyzed a random forest model (RFM). We used the areas under the receiver-operating-characteristic (ROC) curves (AUCs) to assess their DA.

RESULTS

The magnitude of the LR+ for all putative individual RFs and ORs in the logistic regression models was low to moderate. Except for parity, all putative RFs were positively associated with ECS, including hospital fixed-effects and night-shift delivery. The DA of all logistic models ranged from 0.74 to 0.81. The most relevant RFs (pH, induction, and previous C-section) in the CTREEs showed the highest ORs in the logistic models. The DA of the RFM and its most relevant interaction terms was even higher (AUC = 0.94; 95% CI: 0.93-0.95).

CONCLUSION

Putative fetal, maternal, and contextual RFs alone fail to achieve reasonable DA for ECS. It is the combination of these RFs and the interactions between them at each hospital that make it possible to improve the DA for the type of delivery and tailor interventions through prediction to improve the appropriateness of ECS indications.

摘要

目的

提高急诊剖宫产(ECS)的鉴别准确性(DA)。

研究设计

我们前瞻性收集并研究了2014年西班牙三个不同自治区的四家公立医院发生的所有6157例分娩数据。为了确定ECS的危险因素(RFs),我们使用似然比和逻辑回归,拟合了分类树(CTREE),并分析了随机森林模型(RFM)。我们使用受试者操作特征(ROC)曲线下面积(AUCs)来评估它们的DA。

结果

逻辑回归模型中所有假定的个体RFs和ORs的LR+幅度为低到中等。除了产次外,所有假定的RFs均与ECS呈正相关,包括医院固定效应和夜班分娩。所有逻辑模型的DA范围为0.74至0.81。CTREEs中最相关的RFs(pH值、引产和既往剖宫产)在逻辑模型中显示出最高的ORs。RFM及其最相关的交互项的DA甚至更高(AUC = 0.94;95% CI:0.93 - 0.95)。

结论

仅靠假定的胎儿、母亲和环境RFs无法实现合理的ECS鉴别准确性。正是这些RFs的组合以及它们在每家医院之间的相互作用使得提高分娩类型的鉴别准确性并通过预测调整干预措施以提高ECS指征的适宜性成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5e4/5779661/c051fde99335/pone.0191248.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验