Suppr超能文献

微流控装置中可灌注微血管网络上的皮质球体。

Cortical spheroid on perfusable microvascular network in a microfluidic device.

机构信息

Fostering Innovation Through Biosystems for Enhanced Scientific Technologies (FIT BEST) Laboratory, Department of Chemical, Biological, and Bio Engineering, College of Engineering, North Carolina A&T State University, Greensboro, NC, United States of America.

Chemical & Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, Tallahassee, FL, United States of America.

出版信息

PLoS One. 2023 Oct 19;18(10):e0288025. doi: 10.1371/journal.pone.0288025. eCollection 2023.

Abstract

Human induced pluripotent stem cell (hiPSC)-derived brain spheroids can recapitulate the complex cytoarchitecture of the brain, as well as the genetic/epigenetic footprint of human brain development. However, hiPSC-derived 3D models such as spheroid and organoids does not have a perfusable microvascular network, which plays a vital role in maintaining homeostasis in vivo. With the critical balance of positive and negative angiogenic modulators, 3D microvascular network can be achieved by angiogenesis. This paper reports on a microfluidic-based three-dimensional, cortical spheroid grafted on the vascular-network. Vascular network was formed by inducing angiogenic sprouting using concentration gradient-driven angiogenic factors in the microfluidic device. We investigate critical factors for angiogenic vascular network formation with spheroid placement, including 1) a PKCα activator, phorbol-12-myristate-13-acetate (PMA); 2) orientation of endothelial cells under perfusion and permeability of vascular network; 3) effect of extracellular matrix (ECM) types and their densities on angiogenesis; and 4) integration with cortical spheroid on vascular network. This paper demonstrates proof of concept for the potential utility of a membrane-free in vitro cortical spheroid tissue construct with perfusable microvascular network that can be scaled up to a high throughput platform. It can provide a cost-effective alternative platform to animal testing by modeling brain diseases and disorders, and screening drugs.

摘要

人类诱导多能干细胞(hiPSC)衍生的脑类器官可以重现大脑的复杂细胞结构,以及人类大脑发育的遗传/表观遗传特征。然而,hiPSC 衍生的 3D 模型,如球体和类器官,没有可灌注的微血管网络,而微血管网络在维持体内平衡方面起着至关重要的作用。通过血管生成,在正性和负性血管生成调节剂的临界平衡下,可以实现 3D 微血管网络。本文报道了一种基于微流控的三维皮质球体,该球体被移植到血管网络上。通过在微流控装置中使用浓度梯度驱动的血管生成因子诱导血管生成发芽,形成了血管网络。我们研究了球体放置对血管生成网络形成的关键因素,包括 1)蛋白激酶 Cα 激活剂佛波醇-12-肉豆蔻酸-13-醋酸酯(PMA);2)在灌注下内皮细胞的取向和血管网络的渗透性;3)细胞外基质(ECM)类型及其密度对血管生成的影响;4)与血管网络上的皮质球体的整合。本文证明了具有可灌注微血管网络的无膜体外皮质球体组织构建体的潜在实用性,该构建体可以扩展到高通量平台。通过模拟脑疾病和障碍以及筛选药物,它可以为动物试验提供一种具有成本效益的替代平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c15/10586606/f2081ba6500c/pone.0288025.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验