Suppr超能文献

NR 和 PM-NR 参与盐胁迫下黄瓜植物中 NO 生物合成。

Involvement of NR and PM-NR in NO biosynthesis in cucumber plants subjected to salt stress.

机构信息

Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland.

Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland.

出版信息

Plant Sci. 2018 Feb;267:55-64. doi: 10.1016/j.plantsci.2017.11.004. Epub 2017 Nov 15.

Abstract

Nitrate reductase (NR) mainly reduces nitrate to nitrite. However, in certain conditions it can reduce nitrite to NO. In plants, a plasma membrane-associated form of NR (PM-NR) is present. It produces NO for nitrite NO/reductase (Ni-NOR), which can release NO into the apoplastic space. The effect of 50 mM NaCl on NO formation and the involvement of NR in NO biosynthesis were studied in cucumber seedling roots under salt stress. In salt-stressed roots, the amount of NO was higher than in control. The application of tungstate abolished the increase of NO level in stressed roots, indicating that NR was responsible for NO biosynthesis under the test conditions. The involvement of other molybdoenzymes was excluded using specific inhibitors. Furthermore, higher cNR and PM-NR activities were observed in NaCl-treated roots. The increase in NR activity was due to the stimulation of CsNR genes expression and posttranslational modifications, such as enzyme dephosphorylation. This was confirmed by Western blot analysis. Moreover, the increase of nitrite tissue level in short-term stressed roots and the nitrite/nitrate ratio, with a simultaneous decrease of nitrite reductase (NiR) activity, in both short- and long-term stressed roots, could promote the production of NO by NR in roots under salt stress.

摘要

硝酸还原酶(NR)主要将硝酸盐还原为亚硝酸盐。然而,在某些条件下,它也可以将亚硝酸盐还原为 NO。在植物中,存在一种质膜相关形式的 NR(PM-NR)。它为亚硝酸盐 NO 还原酶(Ni-NOR)产生 NO,后者可以将 NO 释放到质外体空间。本研究在盐胁迫下研究了 50mM NaCl 对黄瓜幼苗根中 NO 形成的影响以及 NR 在 NO 生物合成中的作用。在盐胁迫的根中,NO 的含量高于对照。钨酸盐的应用消除了胁迫根中 NO 水平的增加,表明在测试条件下 NR 负责 NO 的生物合成。使用特定抑制剂排除了其他钼酶的参与。此外,在 NaCl 处理的根中观察到更高的 cNR 和 PM-NR 活性。NR 活性的增加是由于 CsNR 基因表达和酶去磷酸化等翻译后修饰的刺激。这通过 Western blot 分析得到了证实。此外,在短期胁迫的根中组织中硝酸盐含量增加,以及在短期和长期胁迫的根中硝酸盐/亚硝酸盐的比例降低,可能会促进 NR 在盐胁迫下根中 NO 的产生。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验