Suppr超能文献

使用单样本动态网络生物标志物量化复杂疾病的临界状态。

Quantifying critical states of complex diseases using single-sample dynamic network biomarkers.

作者信息

Liu Xiaoping, Chang Xiao, Liu Rui, Yu Xiangtian, Chen Luonan, Aihara Kazuyuki

机构信息

Institute of Industrial Science, the University of Tokyo, Tokyo, Japan.

College of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, Anhui Province, China.

出版信息

PLoS Comput Biol. 2017 Jul 5;13(7):e1005633. doi: 10.1371/journal.pcbi.1005633. eCollection 2017 Jul.

Abstract

Dynamic network biomarkers (DNB) can identify the critical state or tipping point of a disease, thereby predicting rather than diagnosing the disease. However, it is difficult to apply the DNB theory to clinical practice because evaluating DNB at the critical state required the data of multiple samples on each individual, which are generally not available, and thus limit the applicability of DNB. In this study, we developed a novel method, i.e., single-sample DNB (sDNB), to detect early-warning signals or critical states of diseases in individual patients with only a single sample for each patient, thus opening a new way to predict diseases in a personalized way. In contrast to the information of differential expressions used in traditional biomarkers to "diagnose disease", sDNB is based on the information of differential associations, thereby having the ability to "predict disease" or "diagnose near-future disease". Applying this method to datasets for influenza virus infection and cancer metastasis led to accurate identification of the critical states or correct prediction of the immediate diseases based on individual samples. We successfully identified the critical states or tipping points just before the appearance of disease symptoms for influenza virus infection and the onset of distant metastasis for individual patients with cancer, thereby demonstrating the effectiveness and efficiency of our method for quantifying critical states at the single-sample level.

摘要

动态网络生物标志物(DNB)能够识别疾病的关键状态或转折点,从而实现对疾病的预测而非诊断。然而,将DNB理论应用于临床实践存在困难,因为在关键状态下评估DNB需要每个个体的多个样本数据,而这些数据通常难以获取,进而限制了DNB的适用性。在本研究中,我们开发了一种新方法,即单样本DNB(sDNB),仅利用每个患者的单个样本来检测个体患者疾病的预警信号或关键状态,从而开辟了一种以个性化方式预测疾病的新途径。与传统生物标志物用于“诊断疾病”所使用的差异表达信息不同,sDNB基于差异关联信息,因此具有“预测疾病”或“诊断近期疾病”的能力。将该方法应用于流感病毒感染和癌症转移的数据集,能够基于个体样本准确识别关键状态或正确预测近期疾病。我们成功识别出流感病毒感染患者疾病症状出现前以及癌症个体患者远处转移发生前的关键状态或转折点,从而证明了我们的方法在单样本水平上量化关键状态的有效性和高效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60aa/5517040/e93ba584101d/pcbi.1005633.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验