King Cason R, Gameiro Steven F, Tessier Tanner M, Zhang Ali, Mymryk Joe S
Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada.
Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
J Virol. 2018 Mar 28;92(8). doi: 10.1128/JVI.01902-17. Print 2018 Apr 15.
The E1A proteins of the various human adenovirus (HAdV) species perform the critical task of converting an infected cell into a setting primed for virus replication. While E1A proteins differ in both sequence and mechanism, the evolutionary pressure on viruses with limited coding capacity ensures that these proteins often have significant overlap in critical functions. HAdV-5 E1A is known to use mimicry to rewire cyclic AMP (cAMP) signaling by decoupling protein kinase A (PKA) from cellular A kinase-anchoring proteins (AKAPs) and utilizing PKA to its own advantage. We show here that E1As from other species of HAdV also possess this viral AKAP (vAKAP) function and examine how they manipulate PKA. E1A from most species of HAdV examined contain a small AKAP-like motif in their N terminus which targets the docking-dimerization domain of PKA as the binding interface for a conserved protein-protein interaction. This motif is also responsible for an E1A-mediated relocalization of PKA regulatory subunits from the cytoplasm into the nucleus, with species-specific E1A proteins having preference for one particular isoform of PKA subunit over another. Importantly, we showed that these newly characterized vAKAPs can integrate into cAMP-responsive transcription as well as contribute to viral genome replication and infectious progeny production for several distinct HAdV species. These data enhance the mechanistic knowledge on how HAdV E1A manipulates cellular PKA to benefit infection. The work establishes that mimicry of AKAPs and subversion of PKA-mediated cAMP signaling are conserved features for numerous human adenoviruses. This study also highlights the molecular determinants conferring selective protein-protein interactions between distinct PKA regulatory subunits and the different E1A proteins of these viruses. Additionally, it further emphasizes the utility of using viral proteins like E1A as tools for studying the molecular biology of cellular regulatory pathways.
各种人类腺病毒(HAdV)的E1A蛋白执行着将受感染细胞转变为有利于病毒复制环境的关键任务。虽然E1A蛋白在序列和机制上存在差异,但编码能力有限的病毒所面临的进化压力确保了这些蛋白在关键功能上往往有显著重叠。已知HAdV-5 E1A通过将蛋白激酶A(PKA)与细胞A激酶锚定蛋白(AKAP)解偶联并利用PKA为自身谋利,利用模拟来重塑环磷酸腺苷(cAMP)信号传导。我们在此表明,来自其他HAdV物种的E1A也具有这种病毒AKAP(vAKAP)功能,并研究它们如何操纵PKA。在所检测的大多数HAdV物种的E1A在其N端含有一个小的AKAP样基序,该基序将PKA的对接二聚化结构域作为保守的蛋白质-蛋白质相互作用的结合界面。该基序还负责E1A介导的PKA调节亚基从细胞质重新定位到细胞核,不同物种的E1A蛋白对一种特定的PKA亚基异构体的偏好超过另一种。重要的是,我们表明这些新鉴定的vAKAP可以整合到cAMP反应性转录中,并有助于几种不同HAdV物种的病毒基因组复制和感染性子代产生。这些数据增强了关于HAdV E1A如何操纵细胞PKA以利于感染的机制知识。这项工作确定,AKAP的模拟和PKA介导的cAMP信号传导的颠覆是许多人类腺病毒的保守特征。这项研究还突出了赋予不同PKA调节亚基与这些病毒的不同E1A蛋白之间选择性蛋白质-蛋白质相互作用的分子决定因素。此外,它进一步强调了使用像E1A这样的病毒蛋白作为研究细胞调节途径分子生物学工具的实用性。