Department of Pharmaceutical and Biomedical Sciences, University of Georgia, College of Pharmacy, 240 W. Green St, Athens, GA 30602, USA.
Department of Biochemistry, Kassel University, Heinrich-Plett-Strasse 40, Kassel 34132, Germany.
Bioorg Med Chem. 2018 Mar 15;26(6):1174-1178. doi: 10.1016/j.bmc.2018.02.001. Epub 2018 Feb 12.
Generation of the second messenger molecule cAMP mediates a variety of cellular responses which are essential for critical cellular processes. In response to elevated cAMP levels, cAMP dependent protein kinase (PKA) phosphorylates serine and threonine residues on a wide variety of target substrates. In order to enhance the precision and directionality of these signaling events, PKA is localized to discrete locations within the cell by A-kinase anchoring proteins (AKAPs). The interaction between PKA and AKAPs is mediated via an amphipathic α-helix derived from AKAPs which binds to a stable hydrophobic groove formed in the dimerization/docking (D/D) domain of PKA-R in an isoform-specific fashion. Although numerous AKAP disruptors have previously been identified that can inhibit either RI- or RII-selective AKAPs, no AKAP disruptors have been identified that have isoform specificity for RIα versus RIβ or RIIα versus RIIβ. As a strategy to identify isoform-specific AKAP inhibitors, a library of chemically stapled protein-protein interaction (PPI) disruptors was developed based on the RII-selective AKAP disruptor, STAD-2. An alanine was substituted at each position in the sequence, and from this library it was possible to delineate the importance of longer aliphatic residues in the formation of a region which complements the hydrophobic cleft formed by the D/D domain. Interestingly, lysine residues that were added to both terminal ends of the peptide sequence to facilitate water solubility appear to contribute to isoform specificity for RIIα over RIIβ while having only weak interaction with RI. This work supports current hypotheses on the mechanisms of AKAP binding and highlights the significance of particular residue positions that aid in distinguishing between the RII isoforms and may provide insight into future design of isoform-selective AKAP disruptors.
第二信使分子 cAMP 的产生介导了各种细胞反应,这些反应对于关键的细胞过程至关重要。在 cAMP 水平升高的情况下,cAMP 依赖的蛋白激酶(PKA)磷酸化各种靶底物的丝氨酸和苏氨酸残基。为了增强这些信号事件的精度和方向性,PKA 通过 A-激酶锚定蛋白(AKAP)被定位到细胞内的离散位置。PKA 与 AKAP 之间的相互作用是通过 AKAP 衍生的具有两亲性α-螺旋介导的,该螺旋以同种型特异性的方式与 PKA-R 的二聚化/对接(D/D)结构域中形成的稳定疏水性凹槽结合。虽然以前已经鉴定出许多 AKAP 破坏剂可以抑制 RI-或 RII-选择性 AKAP,但尚未鉴定出具有 RIα与 RIβ或 RIIα与 RIIβ之间同种型特异性的 AKAP 破坏剂。作为鉴定同种型特异性 AKAP 抑制剂的策略,开发了基于 RII-选择性 AKAP 破坏剂 STAD-2 的化学稳定化蛋白-蛋白相互作用(PPI)破坏剂文库。在序列中的每个位置都用丙氨酸取代,并且可以从该文库中得出,在形成补充由 D/D 结构域形成的疏水性裂缝的区域中,较长的脂肪族残基的重要性。有趣的是,添加到肽序列两端以促进水溶性的赖氨酸残基似乎有助于 RIIα相对于 RIIβ的同种型特异性,而与 RI 的相互作用较弱。这项工作支持 AKAP 结合机制的当前假设,并强调了有助于区分 RII 同工型的特定残基位置的重要性,并且可能为未来设计同种型选择性 AKAP 破坏剂提供参考。