Prokhorov General Physics Institute RAS, Moscow, 119991, Russia.
Nanoscale. 2018 Feb 8;10(6):2936-2943. doi: 10.1039/c7nr07054c.
Molecule encapsulation inside the single-walled carbon nanotube (SWCNT) core has been demonstrated to be a successful route for the modification of nanotube properties. SWCNT diameter-dependent filling results in band gap modification together with the enhancement of photoluminescence quantum yield. However, the interaction between the inner structure and the outer shell is complex. It depends on the orientation of the molecules inside, the geometry of the host nanotube and on several other mechanisms determining the resulting properties of the hybrid nanosystem. In this work we study the influence of encapsulated graphene nanoribbons on the optical properties of the host single-walled carbon nanotubes. The interplay of strain and dielectric screening caused by the internal environment of the nanotube affects its band gap. The photoluminescence of the filled nanotubes becomes enhanced when the graphene nanoribbons are polymerized inside the SWCNTs at low temperatures. We show a gradual photoluminescence quenching together with a selective signal enhancement for exact nanotube geometries, specifically (14,6) and (13,8) species. A precise adjustment of the optical properties and an enhancement of the photoluminescence quantum yield upon filling for nanotubes with specific diameters were assigned to optimal organization of the inner structures.
将分子封装在单壁碳纳米管(SWCNT)核心内已被证明是一种成功的修改纳米管性质的方法。SWCNT 直径依赖性填充导致带隙修饰以及光致发光量子产率的增强。然而,内部结构与外壳之间的相互作用很复杂。它取决于分子在内部的取向、主体纳米管的几何形状以及决定混合纳米系统的最终性质的其他几个机制。在这项工作中,我们研究了封装的石墨烯纳米带对主体单壁碳纳米管光学性质的影响。由纳米管内部环境引起的应变和介电屏蔽的相互作用会影响其带隙。当石墨烯纳米带在低温下在 SWCNT 内聚合时,填充纳米管的光致发光会增强。我们显示了随着特定纳米管几何形状(特别是(14,6)和(13,8)物种)的逐渐光致发光猝灭以及选择性信号增强。对于具有特定直径的纳米管,通过填充对光学性质的精确调整和光致发光量子产率的增强归因于内部结构的最佳组织。