Voronin Kirill V, Ermolaev Georgy A, Burdanova Maria G, Slavich Aleksandr S, Toksumakov Adilet N, Yakubovsky Dmitry I, Paukov Maksim I, Xie Ying, Qian Liu, Kopylova Daria S, Krasnikov Dmitry V, Ghazaryan Davit A, Baranov Denis G, Chernov Alexander I, Nasibulin Albert G, Zhang Jin, Arsenin Aleksey V, Volkov Valentyn
Donostia International Physics Center (DIPC), Donostia/San-Sebastián, 20018, Spain.
Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates.
Adv Sci (Weinh). 2024 Sep;11(36):e2404694. doi: 10.1002/advs.202404694. Epub 2024 Jul 31.
The lattice geometry of natural materials and the structural geometry of artificial materials are crucial factors determining their physical properties. Most materials have predetermined geometries that lead to fixed physical characteristics. Here, the demonstration of a carbon nanotube network serves as an example of a system with controllable orientation achieving on-demand optical properties. Such a network allows programming their optical response depending on the orientation of the constituent carbon nanotubes and leads to the switching of its dielectric tensor from isotropic to anisotropic. Furthermore, it also allows for the achievement of wavelength-dispersion for their principal optical axes - a recently discovered phenomenon in van der Waals triclinic crystals. The results originate from two unique carbon nanotubes features: uniaxial anisotropy from the well-defined cylindrical geometry and the intersection interaction among individual carbon nanotubes. The findings demonstrate that shaping the relative orientations of carbon nanotubes or other quasi-one-dimensional materials of cylindrical symmetry within a network paves the way to a universal method for the creation of systems with desired optical properties.
天然材料的晶格几何结构和人工材料的结构几何结构是决定其物理性质的关键因素。大多数材料具有预先确定的几何结构,从而导致固定的物理特性。在此,碳纳米管网络的展示作为一个具有可控取向的系统的示例,可实现按需光学特性。这样的网络允许根据组成碳纳米管的取向来编程其光学响应,并导致其介电张量从各向同性切换为各向异性。此外,它还允许实现其主光轴的波长色散——这是范德华三斜晶体中最近发现的一种现象。这些结果源于碳纳米管的两个独特特征:明确的圆柱几何形状导致的单轴各向异性以及单个碳纳米管之间的交叉相互作用。这些发现表明,在网络中塑造碳纳米管或其他具有圆柱对称性的准一维材料的相对取向,为创建具有所需光学特性的系统铺平了一条通用方法的道路。